ISIMA1 - ARM assembleur TP1

L'environnement de développement IAR Embedded Workbench 5.0 Kickstart est utilisable avec ou
sans la carte du kit. Un étudiant peut ainsi simuler I'exécution de son programme sur un up ARM
virtuel ou le tester sur la carte.

Pour simplifier la programmation, nous considérons pour l'instant qu'un programme est constitué
d'une partie « Données » et d'une partie « Code ». Ces deux parties sont insérées dans un squelette
de programme assembleur dépendant du mode d'utilisation : simulation ou test sur carte.

Démarrage de I'IDE :
Démarrer > Tous les programmes > [AR Systems > IAR Embedded Workbench

1- Simulation d'un programme

Démarrer I'IDE et remarquer 1'absence de 1'option Simulator dans le menu principal.
Un pop-up s'ouvre et propose différentes actions, choisir :
Create new project

+ asm > asm OK Empty pure assembler project.
Choisir/créer un répertoire et donner un nom de projet.
L'option Simulator est maintenant disponible et un corps de programme nommé asm.s s'affiche.
Les modifications a apporter sont en gras.

NAME main

PUBLIC _ iar program_start
; —— Constantes ---
; Déclarer les constantes ici

SECTION .intvec : CODE (2)
CODE32

__lar program_start
B main

SECTION .text : CODE (2)
CODE32

main NOP

; -— Placer le code du programme ici ---

B. ; Remplacer main par.
; --- Les sous-programmes la ---

DATA
; =—- Données ---
; Déclarer les variables ici
END

Programme 1 - Faire la somme de données 32 bits : une constante immédiate, une constante
nommée quelconque, une variable en mémoire et une donnée pointée.

Saisir le programme puis
project > Clean, Rebuid All
Corriger les erreurs et recommencer...



Cliquer sur 'icone « Make and Debug » en haut a droite,

ajouter les vues : option « View » Register et Memory,

exécuter pas a pas avec l'icone « Step Into » ou F11.

D'autres fonctionnalités sont présentes dans I'option « Debug » du menu.

Les registres et la mémoire sont modifiables.

En cliquant sur asm.s puis sur Project > Option on peut ajouter la production d'un listing.

2- Exécution du programme sur la carte

Utiliser le projet exemple et modifier main.s79.
Les données sont placées avant le code.
La mise au point est semblable a la simulation mais I'option Simulator a disparue.

PROGRAM SQUELETTE TP
; --- Constantes ---
; Déclarer les constantes ici

; --- Segment de données ---
RSEG DATA ID:DATA(2)
DATA

; Déclarer les variables ici

;--- Segment de code ---
RSEG CODE:CODE(2)
CODE32
PUBLIC main
main NOP
; Placer ici le code du programme principal

B . ;ici: Branche ici

; Fin du programme principal

; Placer ici le code des sous-programmes
END ; main

3- Somme de N nombres 32 bits

Le code suivant implante une boucle de N itérations.

Idr rl12, N

cmp rl2, #0 ; éviter 0 itération

beq FinBoucle ;si (N)=0
Boucle:

push {rl12} ; sl besoin
; corps de boucle

pop {rl12} ; idem

subs rl2,rl2, #1

bne Boucle ; s =/= 0 remonter
FinBoucle: ...

Que fait l'instruction suivante ? Est-elle valide ?

ADD 10, 10, [r11], #4
Ecrire un programme qui effectue la somme de N nombres entiers sur 32 bits et range le résultat
dans le mot d'adresse Som.



Programme pour la Simulation

NAME main

PUBLIC _ iar program_start
; --- Constantes ---
Cste EQU -5

SECTION .intvec : CODE (2)

CODE32
__lar_program_start

B main

SECTION .text : CODE (2)
CODE32
main NOP
; --- Code ---
MOV 10, #0
ADD 10, 10, #3
LDR rl,=12345678h
ADD 10,10, rl
LDR rl,=Cste
ADD 10,10, rl
LDR rl1,X
ADD 10,10, rl
LDR 12,PY ;ou
LDR 12,=Y
LDR rl, [12]
ADD 10,10, rl
STR 10, Som

B. ; ici: branche ici

DATA
X DC32 3
PY DC32 Y
Y DC32 -2
Som DS32 4
Libre DC32 -1
END



