
1

A. Erreurs fréquentes

A.1. Erreurs sur les pointeurs

A.1.1. Pointeurs non initialisés

(1)

int x;
int * px;

x = *px;

(2)

char * s;

scanf("%s", s);

Dans le premier cas, le pointeur px n'est pas initialisé donc x prend n'importe quelle

valeur (quand le programme ne provoque pas d'erreur).

Dans le deuxième cas, la mémoire n'a pas été réservée, ainsi le scanf() nous réserve

quelques surprises. s est bien déclaré, mais lui non plus n’est pas initialisé et prend

n’importe qu’elle valeur, il pointe donc sur une zone inconnue et le scanf va essayer

de mettre les caractères à cet endroit générant une erreur de segmentation. Sur le

même principe, les pointeurs que l'on donne aux fonctions strcpy(), gets(), scanf()

doivent être initialisés et un espace mémoire suffisant réservé. En effet, ces fonctions

ne font pas d'allocation mémoire.

A.1.2. Pointeurs constants

Imaginons que l'on veuille copier une chaîne de caractères s1 dans une chaîne de

caractères s2 avec le code suivant :

char s1[10] = "chaine 1";
char s2[10];

s2 = s1;

Dans cette suite d'instructions, l'affectation est illégale : on essaie de modifier s2 qui

est un pointeur constant. Une solution serait d'utiliser l'instruction strcpy() de l'interface
string.h.

strcpy(s2, s1);

2

A.1.3. Renvoi d'un pointeur sur une variable locale

int * calculer()
{
 int x = 0;

 printf("%d", x++);
 return &x;
}

void main()
{
 int * py = calculer();

 printf("%d", *py);
}

A priori, le pointeur py reçoit une valeur calculée dans la fonction calculer() par un

pointeur. Ce n'est pas le cas car, en fait, la fonction calculer() renvoie un pointeur sur

la variable x locale à la fonction et qui n'existe plus en dehors de la fonction. Le

pointeur renvoyé par la fonction ne pointe donc plus sur une adresse valide dès que

la fonction est terminée. Le résultat est indéterminé (fonction du contexte

d’exécution).

A.1.4. Modification d'une copie et non de l'original

Prenons l'exemple simple : incrémentation d'une variable grâce à une fonction...
Exemple 1 :

int incrementer(int x)
{
 return ++x;
}

void main()
{
 int x = 0;

 printf("%d", incrementer(x));
 /* affiche 1 */
 printf("%d", incrementer(x));
 /* affiche 1 */
}

Exemple 2 :

int incrementer2(int * x)
{
 return ++(*x);
}

void main()
{
 int x = 0;
 printf("%d\t", incrementer2(&x)); /* affiche 1 */
 printf("%d\n", incrementer2(&x)); /* affiche 2 */
}

Pourquoi dans l'exemple 1, la variable du programme principal x n'est-elle pas

incrémentée alors que l'on a bien utilisé l'opérateur ++ ?

Simple, dans la fonction incrementer(), la variable x qui est incrémentée n'est pas la

variable passée en paramètre mais une copie de celle-ci. Pour s'en convaincre, il

suffirait de placer un printf() dans la fonction.

3

Tous les paramètres en C sont passés par valeur... Pour modifier la variable, il faut

passer celle-ci par adresse en utilisant un pointeur (cf exemple 2).

A.2. Erreurs diverses

A.2.1. scanf

int x;

scanf ("%d", x);

Il faut passer les variables par adresse et dans ce cas ne pas oublier le "&". (c'est

logique, la fonction change le contenu de la variable).

 malloc / free

Lorsque l'on alloue de la mémoire, il ne faut pas oublier de la rendre au système

après utilisation. A tout malloc() (ou similaire alloc(), calloc()) doit correspondre un free().

Si dans le programme est manipulée une structure "évoluée" (liste chaînée, arbre ...),

il ne faut pas oublier d'appeler une méthode de rendu de mémoire.

Vous pouvez utiliser la commande valgrind pour vérifier s’il y a fuite de mémoire. Plus

d’information sur http://valgrind.org/docs/manual/quick-start.html

A.2.3. oubli du break

int choix = 0;
...
switch (choix)
{
 case 1 : action1();
 case 2 : action2();
 default : action_default();
}

Si choix vaut 1, les fonctions action1(), action2() et action_default() seront appelées. Si

action2() ne doit pas être appelée, il ne faut pas oublier le mot-clé break .

A.2.4 affectation ou test ?

int a = 0;

4

while (a = 1) {
 ...
}

Le code précédent est une boucle sans fin ... Il ne faut pas confondre le test d'égalité

== et l'opérateur d'affectation =.

A.2.5 nom du programme ?

Il est des noms de programme que l'on trouve adapté dans certaines situations mais

qui ont des conséquences inattendues. Voici deux exemples.

Ne jamais appeler un programme null car c'est un nom réservé pour le système (le

périphérique nul /dev/null).

Vous avez appelé votre programme test et il ne se passe rien lors de l'appel ? A

moins d'y accéder par ./test ? C'est normal, test est une commande UNIX. Faites un

petit man pour vérifier.

5

Annexe B : Fonctions d'E/S bas niveau

Ouverture/Création de fichier
int creat(char * nom, int permission);

int open(char * nom, int mode, int permission);

Fermeture de fichier
int close(int fd);

Lecture/Écriture

int read (int fd, char * tampon, int n);

int write(int fd, char * tampon, int n);
Accès séquentiel

long tell (int fd);

long lseek(int fd, long offset, int origine);

Descripteurs de fichier réservés

0
1
2
3
4

stdin
stdout
stderr
fichier spécial E/S
imprimante

Mode Description

O_RDONLY
O_WRONLY
O_RDWR

ouverture en lecture seule
ouverture en écriture seule
ouverture en lecture/écriture

Origine Description

0 ou SEEK_SET
1 ou SEEK_CUR
2 ou SEEK_END

début du fichier
position courante
fin de fichier

6

Annexe C : Fichiers binaires

Ouverture/Création de fichier
FILE * fopen(const char * nom, char * mode);

Fermeture de fichier
Int fclose(FILE * fic);

Lecture/Écriture

size_t fread(void *ptr, size_t taille, size_t nbobj, FILE * fic);

size_t fwrite(const void *ptr, size_t taille, size_t nbobj, FILE * fic);
Accès séquentiel

long ftell(FILE * fic);

int fseek(FILE * fic, long deplacement, int origine);
Divers

int feof(FILE * fic);

int ferror(FILE * fic);

int fflush(FILE * fic);

Constante Description

BUFSIZE
FOPEN_MAX

taille du buffer
nombre de fichiers ouvrables

Origine Description

0 ou SEEK_SET
1 ou SEEK_CUR
2 ou SEEK_END

début du fichier
position courante
fin du fichier

7

Annexe D : Comment calculer le temps écoulé en C

Ceci est juste un préambule au calcul du temps en C sous UNIX. Pour de plus

amples renseignements, consulter le Kernighan et Ritchie (p 261) ou les pages man.

Ceci doit aussi être valable pour la norme ANSI.

Quelques fonctions...

clock_t clock();

time_t time(time_t * t);

double difftime(time_t * t2, time_t * t1);

Fichier d’entête
time.h

Constantes

CLK_TCK

CLOCKS_PER_SEC (ANSI C)

Pour toute opération, il faut bien entendu ne pas oublier d'inclure le fichier time.h.

La fonction clock() renvoie une estimation du temps d'utilisation CPU depuis le début

du programme ou -1 en cas d'échec. Il faut diviser cette valeur par l'une des deux

constantes données pour obtenir un temps en secondes. Si vous voulez une unité de

temps différente (plus précise par exemple), je vous conseille d'aller voir ce que vaut

cette valeur ou de faire une petite conversion en double.

ATTENTION : cette fonction doit être supportée par le système pour donner un

résultat correct (sinon, on a juste le droit à une différence de temps!). Exit donc notre

bon cygwin ! D'après le man Linux, sur certaines machines, clock() remet le compteur

à 0 toutes les 72 minutes.

8

ATTENTION : La norme C autorise l'initialisation de la fonction par n'importe quelle

valeur. Pour calculer le temps, il est donc conseillé de faire un premier appel à la

fonction en début de programme et le second quand il faut puis de faire la différence.

La fonction time() renvoie l'heure calendaire (depuis le 1er janvier 1970 0h00:00). Si le

pointeur t n'est pas nul, la variable contiendra aussi cette valeur.

La fonction difftime() permet de calculer la différence t2 - t1 (en secondes).

9

Annexe E : Erreurs à l'exécution

Je veux juste parler un tout petit peu de ces erreurs d'exécution qui nous pourrissent

la vie, surtout quand on manipule (plus ou moins bien) des pointeurs. Je fais bien

entendu allusion aux très célèbres core dump ou segmentation fault.

L'erreur de segmentation se produit lorsque le programme essaye d'accéder à une

zone mémoire qui ne lui est pas réservée (allouée). En général, on obtient une image

de la mémoire (core dump). Le remède avec une telle erreur est de vérifier le

comportement de pointeurs (initialisation, allocations suffisantes).

Le core dump est une copie [partielle] de la mémoire (core) au moment où l'erreur

s'est produite. On a alors un fichier .core qui peut être très gros et qu'il est conseillé

d'effacer quand on n'en a plus besoin (après déboguage).

10

Annexe F : La librairie standard

La syntaxe des principales fonctions de la librairie standard est donnée ci-dessous. Une liste
exhaustive de toutes les fonctions disponibles figure à l'annexe B de l'ouvrage de Kernighan et
Richie. Pour obtenir plus d'informations sur ces fonctions, il suffit de consulter les pages de
man correspondant.

F.1. Entrées-sorties <stdio.h>

F.1.1. Manipulation de fichiers

Prototype de fonction action
FILE * fopen(char *reference, char *mode); ouverture d'un fichier
void fclose(FILE *stream); fermeture d'un fichier

int fflush(FILE *stream);
force le vidage du tampon associé au
stream. stream=NULL : tous les
tampons

F.1.2. Entrées et sorties formatées

Prototype de fonction action
int printf(char *format, ...); écriture sur la sortie standard
int scanf(char *format, ...); lecture depuis l'entrée standard
int fprintf(FILE *stream, char *format, ...); écriture sur un fichier
int fscanf(FILE *stream, char *format, ...); lecture depuis un fichier

int sprintf(char *s, char *format, ...); écriture dans la chaîne de
caractères s

int sscanf(char *s, char *format, ...); lecture depuis la chaîne de
caractères s

F.1.3. Ecriture et lecture de caractères

Prototype de fonction action

int getchar(void); lecture d'un caractère depuis
l'entrée standard

int putchar(int c); écriture d'un caractère sur la sortie
standard

char * gets(char *s); lecture d'une chaîne de caractères
sur l'entrée standard

11

int * puts(char *s); écriture d'une chaîne de caractères
sur la sortie standard

int fgetc(FILE *stream); lecture d'un caractère depuis un
fichier

int fputc(int c, FILE *stream); écriture d'un caractère sur un
fichier

int getc(FILE *stream); équivalent de fgetc mais
implémenté par une macro

int putc(int c, FILE *stream); équivalent de fputc mais
implémenté par une macro

char * fgets(char *s, size_t nb, FILE *stream); lecture d'une chaîne de caractères
depuis un fichier

int * fputs(char *s, FILE *stream); écriture d'une chaîne de caractères
sur un fichier

F.2. Manipulation de chaînes de caractères <string.h>

Prototype de fonction action

int strlen(char *s) ; calcule la longueur de la chaîne s;
retourne la longueur.

char * strcpy(char *s1, char *s2); copie la chaîne s2 dans la chaîne s1;
retourne s1.

char * strncpy(char *s1, char *s2, size_t n); copie n caractères de la chaîne s2
dans la chaîne s1; retourne s1.

void memcopy(char *s1, char *s2, size_t n); recopie la zone mémoire de s2 de n
octets dans la zone mémoire de s1.

void * memset(void *s, int c, size_t n); initialise les n octets d’une zone
mémoire s aux caractères c.

char * strcat(char *s1, char *s2); concatène la chaîne s2 à la fin de la
chaîne s1; retourne s1.

char * strncat(char *s1, char *s2, size_t n);
concatène n caractères de la chaîne
s2 à la fin de la chaîne s1; retourne
s1.

int strcmp(char *s1, char *s2);

compare s1 et s2 pour l'ordre
lexicographique; retourne une valeur
négative si s1 est inférieure à s2, une
valeur positive si s1 est supérieure à
s2, 0 si elles sont identiques.

int strncmp(char *s1, char *s2, size_t n); compare les n premiers caractères de
s1 et s2.

char * strchr(char *s, char c);
retourne un pointeur sur la première
occurrence de c dans s, et NULL si c
n'y figure pas.

12

char * strrchr(char *s, char c);
retourne un pointeur sur la dernière
occurrence de c dans s, et NULL si c
n'y figure pas.

char * strstr(char *s1, char *s2);
retourne un pointeur sur la première
occurrence de s2 dans s1, et NULL si
s2 n'y figure pas.

F.3. Manipulation de caractères <ctype.h>

Toutes les fonctions ci-dessous permettent de tester une propriété du caractère passé en
paramètre. Elles renvoient la valeur 1 si le caractère vérifie la propriété et 0 sinon.

Prototype de fonction renvoie 1 si le caractère est

int isalnum(int c); une lettre ou un chiffre
int isalpha(int c); une lettre
int iscntrl(int c); un caractère de commande
int isdigit(int c); un chiffre décimal
int isgraph(int c); un caractère imprimable ou le blanc
int islower(int c); une lettre minuscule
int isprint(int c); un caractère imprimable (pas le blanc)
int ispunct(int c); un caractère imprimable qui n'est ni une lettre ni un chiffre
int isspace(int c); un blanc
int isupper(int c); une lettre majuscule
int isxdigit(int c); un chiffre hexadécimal

On dispose également de deux fonctions permettant la conversion entre lettres minuscules et
lettres majuscules :

Prototype de fonction action

int tolower(int c); convertit c en minuscule si c'est une lettre majuscule, retourne c
sinon.

int toupper(int c); convertit c en majuscule si c'est une lettre minuscule, retourne c
sinon.

F.4. Fonctions mathématiques <math.h>

Le résultat et les paramètres de toutes ces fonctions sont de type double. Si les paramètres
effectifs sont de type float, ils seront convertis en double par le compilateur. L’inclusion de
<math.h> est obligatoire si vous voulez que le compilateur fonctionne correctement.

13

Prototype de fonction action
double cos(double x); cosinus
double sin(double x); sinus
double tan(double x); tangente
double acos(double x); arc cosinus
double asin(double x); arc sinus
double atan(double x); arc tangente
double exp(double x); Exponentielle ex
double log(double x); logarithme népérien
double log10(double x); logarithme en base 10
double pow(double x, double y); puissance xy
double sqrt(double x); racine carrée
double fabs(double x); valeur absolue
double ceil(double x); partie entière supérieure
double floor(double x); partie entière inférieure

F.5. Fonctions utilitaires divers <stdlib.h>

F.5.1. Allocation dynamique

Prototype de fonction action

void * malloc(size_t taille);
allocation dynamique d’une zone
mémoire de taille octets. Elle
retourne l’adresse du début de la zone
mémoire allouée.

void * calloc(size_t nb_elt,
 size_t taille_elt);

allocation dynamique et initialisation
de la zone allouée à zéro.

void * free(void *ptr); libère une zone mémoire.

void * realloc(void *ptr, size_t taille);
modifie la taille d'une zone mémoire
préalablement allouée par calloc ,
malloc ou realloc.

F.5.2. Conversion de chaînes de caractères en nombres

Les fonctions suivantes permettent de convertir une chaîne de caractères en un nombre.

Prototype de fonction action
double atof(char *chaine); convertit chaine en un double
int atoi(char *chaine); convertit chaine en un int
long atol(char *chaine); convertit chaine en un long int

14

F.5.3. Génération de nombres pseudo-aléatoires

Prototype de fonction action

int rand(void);
fournit un nombre entier pseudo-aléatoire dans
l'intervalle [0, RAND_MAX], où RAND_MAX est une
constante prédéfinie au moins égale à 215-1.

void srand(unsigned int germe);
modifie la valeur de l'initialisation du générateur
pseudo-aléatoire utilisé par rand. Elle est égale à 1 par
défaut.

F.5.4. Arithmétique sur les entiers

Prototype de fonction action
int abs(int x); valeur absolue d'un entier
long labs(long x); valeur absolue d'un long int

F.5.5. Recherche et tri

Prototype de fonction action
void qsort(void *tab,
 size_t n, size_t taille,
 int (*comp)(void * , void *));

tri sur place par ordre croissant d’un
tableau tab de n éléments de taille
taille.

int bsearch(void *ptr, void *tab,
 size_t n, size_t taille,
 int (*comp)(void *, void *));

recherche dichotomique d’un élément
ayant l’adresse ptr, dans un tableau trié
tab de n éléments de taille taille.

F.5.6. Communication avec l'environnement

Prototype de fonction action
void abort(void); provoque un arrêt anormal du programme.

void exit(int etat);
terminaison du programme; rend le contrôle au système en lui
fournissant la valeur etat (la valeur 0 est considérée comme une
fin normale).

int system(char *s); exécution de la commande système définie par la chaîne de
caractères s.

F.6. Date et heure <time.h>

Plusieurs fonctions permettent d'obtenir la date et l'heure. Le temps est représenté par des
objets de type time_t ou clock_t, lesquels correspondent généralement à des int ou à des
long int.

15

Prototype de fonction action

time_t time(time_t *tp);
retourne le nombre de secondes écoulées
depuis le 1er janvier 1970, 0 heures G.M.T.
La valeur retournée est assignée à *tp.

double difftime(time_t t1, time_t t2); retourne la différence t1 - t2 en secondes.

char * ctime(time_t *tp);
convertit le temps système *tp en une
chaîne de caractères explicitant la date et
l'heure sous un format prédéterminé.

Clock_t clock(void); retourne le temps CPU en microsecondes
utilisé depuis le dernier appel à clock.

16

Annexe G : format de printf/fprintf/sprintf

Le format détaillé de ces fonctions est :
 %[flag] [largeur_champ] [.[precision]] [l]caractere_conversion

Caractère de conversion Signification
d, i Affiche un entier signé en décimal
o Affiche un entier en octal
x, X Affiche un entier en hexadécimal
u Affiche un entier non signé en décimal
c Affiche un caractère
s Affiche une chaîne de caractères

f Affiche un float ou double en décimal avec 6 chiffres
après la virgule sauf si une autre précision est indiquée.

e, E Affiche un nombre réel en notation scientifique
g, G Utilise le format e, E ou f selon l’exposant
% Affiche le caractère %

L’indicateur de précision est constitué du point décimal (.) seul ou accompagné d’un
nombre. Il ne s’applique qu’aux e E f g G s. Il indique le nombre de chiffres à afficher
après la virgule, ou le nombre de caractères s’il est utilisé avec s. Le point décimal seul
indique une précision de 0.

La largeur de champs indique le nombre minimum de caractères de la sortie. Cette largeur
peut être représentée par :

- Un entier décimal ne commence pas par 0. La sortie sera complétée à gauche par
des blancs.

- Un entier décimal commence par 0. La sortie sera complétée à gauche par des
zéros.

- Le caractère * La valeur de l’argument suivant de type int sera interprétée comme
la largeur de champs. Exemple : int l=5, a ; printf("%*d", l, a);

Des drapeaux (flag) peuvent être :

- La sortie sera cadrée à gauche, c’est l’option par défaut.
+ Les nombres seront affichés avec leur signe.
espace Si le premier caractère n’est pas un signe, place un espace au début.
0 La sortie sera complétée à gauche par des zéros.
Spécifie un format de sortie différent. Pour o, le premier chiffre sera

0. Pour x ou X, le préfixe correspondant 0x ou 0X sera ajouté si le
résultat n’est pas nul. Pour e E f g et G, la sortie comportera toujours
un point décimal ; pour f et G, les zéros de terminaison seront
conservés.

17

Annexe G : format de scanf/fscanf/sscanf

Le format de ces fonctions peut contenir :

- des espaces et des tabulations qui seront ignorés.
- des caractères ordinaires (différents de %) , dont chacun est supposé s’identifier au

caractère suivant du flot d’entrée autre qu’un caractère d’espacement.
- des spécifications de conversion composé d’un %, d’un caractère facultatif de

suppression d’affectation *, d’un nombre facultatif donnant la largeur maximum
du champ, d’un champ facultatif de précision h, l ou L.

Caractère de
conversion Type de l’argument

Converti en

d int * entier sous forme décimale.

i int *
entier. L’entier peut être sous forme octal s’il est
précédé de 0, ou hexadécimal s’il est précédé par 0x ou
0X.

o int * entier sous forme octale.
x, X int * entier sous forme hexadécimale.
u unsigned int * entier non signé sous forme décimal.
c char * caractère.
s char * chaîne de caractères sans espace.
e, f, g float * nombre en virgule flottant.

Caractère de
précision

Signification

h Placé avant d, i, o, x ou u, il indique que l’argument est de type
short *.

l
Placé avant d, i, o, x ou u, il indique que l’argument est de type long
*. Placé devant e, f ou g, il indique que l’argument est de type double
*.

L Placé avant e, f ou g, il indique que l’argument est de type long double
*.

