A. Erreurs fréquentes

A.1. Erreurs sur les pointeurs

A.1.1. Pointeurs non initialisés

€Y)
int X; char * s;
int * px;

scanf('%s"™, s);
X = *px;

Dans le premier cas, le pointeur px n'est pas initialisé donc x prend n'importe quelle

valeur (quand le programme ne provoque pas d'erreur).

Dans le deuxieme cas, la mémoire n'a pas été réservée, ainsi le scanf() nous réserve
quelques surprises. s est bien déclaré, mais Iui non plus n’est pas initialisé et prend
n’importe qu’elle valeur, il pointe donc sur une zone inconnue et le scanf va essayer
de mettre les caractéres a cet endroit générant une erreur de segmentation. Sur le
méme principe, les pointeurs que l'on donne aux fonctions strcpy(), gets(), scanf()
doivent étre initialisés et un espace mémoire suffisant réservé. En effet, ces fonctions

ne font pas d'allocation mémoire.

A.1.2. Pointeurs constants

Imaginons que I'on veuille copier une chaine de caractéres s1 dans une chaine de

caractéres s2 avec le code suivant :

char s1[10] = "‘chaine 1";
char s2[10];

s2 = s1;

Dans cette suite d'instructions, I'affectation est illégale : on essaie de modifier s2 qui

est un pointeur constant. Une solution serait d'utiliser l'instruction strcpy() de l'interface
string.h.

strcpy(s2, sl);

A.1.3. Renvoi d'un pointeur sur une variable locale

int * calculer()

{

int x = 0;

printf(C'%d™”, x++);
return &x;

}

void main()
{ int * py = calculer();
printf('%d”, *py);

}
A priori, le pointeur py recoit une valeur calculée dans la fonction calculer() par un
pointeur. Ce n'est pas le cas car, en fait, la fonction calculer() renvoie un pointeur sur
la variable x locale a la fonction et qui n'existe plus en dehors de la fonction. Le
pointeur renvoyé par la fonction ne pointe donc plus sur une adresse valide dés que
la fonction est terminée. Le résultat est indéterminé (fonction du contexte

d’exécution).
A.1.4. Modification d'une copie et non de l'original

Prenons I'exemple simple : incrémentation d'une variable grace a une fonction...

Exemple 1 :
int incrementer(int Xx) Exemple 2 :
{ return ++x: int incrementer2(int * x)
’ {
b return ++(*x);
}
void main()
LI void mainQ
- v g B int x = 0;
B£I2¥I§c§2 i :;Crementer(x)), printf("%d\t", incrementer2(&x)); /* affiche 1 */
orintFC%d”, incrementer(x)): printf("'%d\n", incrementer2(&x)); /* affiche 2 */
/* affiche 1 */ ¥

}
Pourquoi dans l'exemple 1, la variable du programme principal x n'est-elle pas

incrémentée alors que I'on a bien utilisé l'opérateur ++ ?

Simple, dans la fonction incrementer(), la variable x qui est incrémentée n'est pas la
variable passée en parameétre mais une copie de celle-ci. Pour s'en convaincre, il

suffirait de placer un printf() dans la fonction.

Tous les parameétres en C sont passés par valeur... Pour modifier la variable, il faut

passer celle-ci par adresse en utilisant un pointeur (cf exemple 2).

A.2. Erreurs diverses

A.2.1. scanf

int x;

scanf ("%d", x);

[l faut passer les variables par adresse et dans ce cas ne pas oublier le "&". (c'est

logique, la fonction change le contenu de la variable).

malloc / free

Lorsque l'on alloue de la mémoire, il ne faut pas oublier de la rendre au systéme
aprées utilisation. A tout malloc() (ou similaire alloc(), calloc()) doit correspondre un free().
Si dans le programme est manipulée une structure "évoluée" (liste chainée, arbre ...),
il ne faut pas oublier d'appeler une méthode de rendu de mémoire.

Vous pouvez utiliser la commande valgrind pour vérifier s’il y a fuite de mémoire. Plus

d’information sur http://valgrind.org/docs/manual/quick-start.html

A.2.3. oubli du break

int choix = 0;

switch (choix)

{
case 1 : actionl();
case 2 : action2();
default : action_default();
}

Si choix vaut 1, les fonctions action1(), action2() et action_default() seront appelées. Si

action2() ne doit pas étre appelée, il ne faut pas oublier le mot-clé break .

A.2.4 affectation ou test ?

int a = 0;

while (a = 1) {

}

Le code précédent est une boucle sans fin ... Il ne faut pas confondre le test d'égalité

== et I'opérateur d'affectation =.
A.2.5 nom du programme ?

Il est des noms de programme que I'on trouve adapté dans certaines situations mais

qui ont des conséquences inattendues. Voici deux exemples.

Ne jamais appeler un programme nul// car c'est un nom réservé pour le systeme (le

périphérique nul /dev/null).

Vous avez appelé votre programme fest et il ne se passe rien lors de l'appel ? A
moins d'y accéder par ./fest? C'est normal, fest est une commande UNIX. Faites un

petit man pour vérifier.

Annexe B : Fonctions d'E/S bas niveau

Ouverture/Création de fichier |

int creat(char * nom, int permission);

int open(char * nom, int mode, int permission);

Fermeture de fichier

int close(int fd);

Lecture/Ecriture |

int read (int fd, char * tampon, int n);
int write(int fd, char * tampon, int n);

Acceés séquentiel |

long tell (int fd);

long Iseek(int fd, long offset, int origine);

Descripteurs de fichier réserves |

0 stdin

1 stdout

2 stderr

3 fichier spécial E/S

4 imprimante

Mode 'Description |
O_RDONLY ouverture en lecture seule
O_WRONLY ouverture en écriture seule
O_RDWR ouverture en lecture/écriture

Origine Description

0 ou SEEK_SET début du fichier
1 ou SEEK_CUR position courante
2 ou SEEK_END fin de fichier

Annexe C : Fichiers binaires

Ouverture/Création de fichier

FILE * fopen(const char * nom, char * mode);

Fermeture de fichier
Int fclose(FILE * fic);

Lecture/Ecriture

size_t fread(void *ptr, size_t taille, size_t nbobj, FILE * fic);

size_t fwrite(const void *ptr, size_t taille, size_t nbobj, FILE * fic);

Acces sequentiel

long ftell(FILE * fic);

int fseek(FILE * fic, long deplacement, int origine);

DIVETES
int feof(FILE * fic);
int ferror(FILE * fic);

int filush(FILE * fic);

Constante | Description

BUFSIZE taille du buffer
FOPEN_MAX nombre de fichiers ouvrables

Origine Description

0 ou SEEK_SET début du fichier
1 ou SEEK_CUR position courante
2 ou SEEK_END fin du fichier

Annexe D : Comment calculer le temps écoulé en C

Ceci est juste un préambule au calcul du temps en C sous UNIX. Pour de plus
amples renseignements, consulter le Kernighan et Ritchie (p 261) ou les pages man.

Ceci doit aussi étre valable pour la norme ANSI.

Quelques fonctions...

clock_t clock();
time_t time(time_t * t);

double difftime(time_t * {2, time_t * t1);

Fichier d’entéte |

| time.h

CLK_TCK

CLOCKS_PER_SEC (ANSI C)

Pour toute opération, il faut bien entendu ne pas oublier d'inclure le fichier time.h.

La fonction clock() renvoie une estimation du temps d'utilisation CPU depuis le début
du programme ou -1 en cas d'échec. Il faut diviser cette valeur par I'une des deux
constantes données pour obtenir un temps en secondes. Si vous voulez une unité de
temps différente (plus précise par exemple), je vous conseille d'aller voir ce que vaut

cette valeur ou de faire une petite conversion en double.

ATTENTION : cette fonction doit étre supportée par le systeme pour donner un
résultat correct (sinon, on a juste le droit a une différence de temps!). Exit donc notre
bon cygwin ! D'aprés le man Linux, sur certaines machines, clock() remet le compteur

a 0 toutes les 72 minutes.

ATTENTION : La norme C autorise l'initialisation de la fonction par n'importe quelle
valeur. Pour calculer le temps, il est donc conseillé de faire un premier appel a la

fonction en début de programme et le second quand il faut puis de faire la différence.

La fonction time() renvoie I'heure calendaire (depuis le 1¢r janvier 1970 0h00:00). Si le

pointeur ¢ n'est pas nul, la variable contiendra aussi cette valeur.

La fonction difftime() permet de calculer la différence £ - {; (en secondes).

Annexe E : Erreurs a I'exécution

Je veux juste parler un tout petit peu de ces erreurs d'exécution qui nous pourrissent
la vie, surtout quand on manipule (plus ou moins bien) des pointeurs. Je fais bien

entendu allusion aux trés célébres core dump ou segmentation fault.

L'erreur de segmentation se produit lorsque le programme essaye d'accéder a une
zone mémoire qui ne lui est pas réservée (allouée). En général, on obtient une image
de la mémoire (core dump). Le reméde avec une telle erreur est de vérifier le

comportement de pointeurs (initialisation, allocations suffisantes).

Le core dump est une copie [partielle] de la mémoire (core) au moment ou l'erreur
s'est produite. On a alors un fichier .core qui peut étre tres gros et qu'il est conseillé

d'effacer quand on n'en a plus besoin (aprés déboguage).

Annexe F : La librairie standard

La syntaxe des principales fonctions de la librairie standard est donnée ci-dessous. Une liste
exhaustive de toutes les fonctions disponibles figure a I'annexe B de I'ouvrage de Kernighan et
Richie. Pour obtenir plus d'informations sur ces fonctions, il suffit de consulter les pages de
man correspondant.

F.1. Entrées-sorties <stdio.n>

F.1.1. Manipulation de fichiers

Prototype de fonction action
FILE * fopen(char *reference, char *mode); ouverture d'un fichier
void fclose(FILE *stream); fermeture d'un fichier
force le vidage du tampon associé au
int fflush(FILE *stream); stream. stream=NULL : tous les
tampons

F.1.2. Entrées et sorties formatées

Prototype de fonction action
int printf(char *format, ...); écriture sur la sortie standard
int scanf(char *format, ...); lecture depuis I'entrée standard
int fprintf(FILE *stream, char *format, ...); écriture sur un fichier
int fscanf(FILE *stream, char *format, ...); lecture depuis un fichier
int sprintf(char *s, char *format, ...); ec“uwedanSIaChmnede

caracteres s

int sscanf(char *s, char *format, ...); lecture depuis la chaine de

caracteres s

F.1.3. Ecriture et lecture de caractéres

Prototype de fonction action

lecture d'un caractére depuis
I'entrée standard

écriture d'un caractére sur la sortie
standard

lecture d'une chaine de caracteres
sur I'entrée standard

int getchar(void);

int putchar(int c);

char * gets(char *s);

10

int *

int

int

int

int

char * fgets(char *s, size t nb, FILE *stream);

int * fputs(char *s, FILE *stream);

puts(char *s);

fgetc(FILE *stream);

fputc(int c, FILE *stream);

getc(FILE *stream);

putc(int c, FILE *stream);

écriture d'une chaine de caractéres
sur la sortie standard

lecture d'un caractere depuis un
fichier

écriture d'un caractére sur un
fichier

équivalent de fgetc mais
implémenté par une macro

équivalent de fputc mais
implémenté par une macro
lecture d'une chaine de caractéres
depuis un fichier

écriture d'une chaine de caractéres
sur un fichier

F.2. Manipulation de chaines de caracteres <string.h>

int

char *

char *

char *

int

int

char *

Prototype de fonction

strlen(char *s) ;

strcpy(char *sl, char *s2);

strncpy(char *sl1, char *s2, size t n);

memcopy(char *sl1, char *s2, size t n);

memset(void *s, int c, size_t n);

strcat(char *sl1, char *s2);

strncat(char *sl1, char *s2, size t n);

strcmp(char *sl1, char *s2);

strncmp(char *sl1, char *s2, size t n);

strchr(char *s, char c¢);

action

calcule la longueur de la chaine s;
retourne la longueur.

copie la chaine s2 dans la chaine s1;
retourne si.

copie n caracteres de la chaine s2
dans la chaine s1; retourne s1.

recopie la zone mémoire de s2 de n
octets dans la zone mémoire de s1.

initialise les n octets d’une zone
mémoire s aux caracteres c.

concaténe la chaine s2 a la fin de la
chaine s1; retourne s1.

concaténe n caractéres de la chaine
s2 a la fin de la chaine s1; retourne
sl.

compare s1 et s2 pour l'ordre
lexicographique; retourne une valeur
négative si s1 est inférieure a s2, une
valeur positive si s1 est supérieure a
s2, 0 si elles sont identiques.

compare les n premiers caracteres de
slets2.

retourne un pointeur sur la premiére
occurrence de c dans s, et NULL Si ¢
n'y figure pas.

retourne un pointeur sur la derniere

char * strrchr(char *s, char c); occurrence de c dans s, et NULL Si ¢
n'y figure pas.
retourne un pointeur sur la premiere
char * strstr(char *sl, char *s2); occurrence de s2 dans s1, et NULL Si

s2 n'y figure pas.

F.3. Manipulation de caractéres <ctype.n-

Toutes les fonctions ci-dessous permettent de tester une propriété du caractere passé en
parametre. Elles renvoient la valeur 1 si le caractére vérifie la propriété et 0 sinon.

Prototype de fonction renvoie 1 si le caractere est

int isalnum(int c); une lettre ou un chiffre

int isalpha(int c); une lettre

int iscntrl(int c); un caractere de commande

int isdigit(int c); un chiffre décimal

int isgraph(int c); un caractere imprimable ou le blanc
int islower(int c); |une lettre minuscule

int isprint(int c); un caractere imprimable (pas le blanc)
int ispunct(int c); |un caractére imprimable qui n'est ni une lettre ni un chiffre
int isspace(int c); un blanc

int isupper(int c); une lettre majuscule

int isxdigit(int c); |un chiffre hexadécimal

On dispose également de deux fonctions permettant la conversion entre lettres minuscules et
lettres majuscules :

Prototype de fonction action

convertit ¢ en minuscule si c'est une lettre majuscule, retourne c
sinon.

convertit c en majuscule si c'est une lettre minuscule, retourne c
sinon.

int tolower(int c);

int toupper(int c);

F.4. Fonctions mathématiques <natn.n>

Le résultat et les parameétres de toutes ces fonctions sont de type double. Si les parameétres
effectifs sont de type float, ils seront convertis en double par le compilateur. L’ inclusion de
<math.h> est obligatoire si vous voulez que le compilateur fonctionne correctement.

12

Prototype de fonction
double cos(double x);
double
double
double
double
double
double
double
double
double
double
double
double
double

sin(double x);
tan(double x);
acos(double x);
asin(double x);
atan(double x);
exp(double x);
log(double x);
logl0(double x);
pow(double x, double y);
sgrt(double x);
fabs(double x);
ceil(double x);
floor(double x);

action
cosinus
sinus
tangente
arc cosinus
arc sinus
arc tangente
Exponentielle e*
logarithme népérien
logarithme en base 10
puissance x”
racine carrée
valeur absolue
partie entiere supérieure
partie entiere inférieure

F.5. Fonctions utilitaires divers <stdiio.n>

F.5.1. Allocation dynamique

Prototype de fonction

void * malloc(size_t taille);

void * calloc(size_t nb_elt,
size_t taille_elt);

void * free(void *ptr);

void *

realloc(void *ptr, size_ t taille);

action
allocation dynamique d’une zone
mémoire de taille octets. Elle
retourne I’adresse du début de la zone
mémoire allouée.
allocation dynamique et initialisation
de la zone allouée a zéro.

libére une zone mémaoire.

modifie la taille d'une zone mémoire
préalablement allouée par calloc,
malloc ou realloc.

F.5.2. Conversion de chaines de caractéres en nombres

Les fonctions suivantes permettent de convertir une chaine de caractéres en un nombre.

Prototype de fonction
double atof(char *chaine);
int atoi(char *chaine);

long atol (char *chaine);

action
convertit chaine en un double
convertit chaine en un int
convertit chaine en un long int

13

F.5.3. Génération de nombres pseudo-aléatoires

Prototype de fonction action

fournit un nombre entier pseudo-aléatoire dans
I'intervalle [0, RAND_MAX], ou RAND_MAX est une

int rand(void); e i A
constante prédéfinie au moins égale a 2*-1.

modifie la valeur de l'initialisation du générateur
void srand(unsigned int germe); pseudo-aléatoire utilise par rand. Elle est égale a 1 par
défaut.

F.5.4. Arithmétique sur les entiers

Prototype de fonction action
int abs(int x); valeur absolue d'un entier
long labs(long x); valeur absolue d'un long int

F.5.5. Recherche et tri

Prototype de fonction action
void gsort(void *tab, tri sur place par ordre croissant d’un
size_t n, size_t taille, tableau tab de n éléments de taille
int (*comp)(void * , void *)); taille.
int bsearch(void *ptr, void *tab, recherche dichotomique d’un élément
size_t n, size_t taille, ayant I’adresse ptr, dans un tableau trié

int (*comp)(void *, void *)); ¢aph de n éléments de taille taille.

F.5.6. Communication avec I'environnement

Prototype de fonction action
void abort(void); provoque un arrét anormal du programme.

terminaison du programme; rend le contrdle au systeme en lui
void exit(int etat); fournissant la valeur etat (la valeur 0 est considérée comme une
fin normale).

exécution de la commande systéme définie par la chaine de

int system(char *s); .
y () caracteres s.

F.6. Date et heure <tine.n>

Plusieurs fonctions permettent d'obtenir la date et I'neure. Le temps est représenté par des
objets de type time_t ou clock_t, lesquels correspondent généralement a des int ou a des
long int.

14

Prototype de fonction

time_t time(time_t *tp);

double difftime(time_t tl, time_t t2);

char * ctime(time_t *tp);

Clock_t clock(void);

15

action
retourne le nombre de secondes écoulées
depuis le 1* janvier 1970, 0 heures G.M.T.
La valeur retournée est assignée a *tp.
retourne la différence t1 - t2 en secondes.
convertit le temps systéeme *tp en une
chaine de caractéres explicitant la date et
I'neure sous un format prédéterminé.
retourne le temps CPU en microsecondes
utilisé depuis le dernier appel a clock.

Annexe G : format de printf/fprintf/sprintf

Le format détaillé de ces fonctions est :
%[flag] [largeur_champ] [-[precision]] [l]caractere_conversion

Caractére de conversion Signification
d Affiche un entier signé en décimal
") Affiche un entier en octal
X, X Affiche un entier en hexadécimal
u
(]
S

Affiche un entier non signé en décimal

Affiche un caractére

Affiche une chaine de caractéres

Affiche un float ou double en décimal avec 6 chiffres

f apres la virgule sauf si une autre précision est indiquée.
e, E Affiche un nombre réel en notation scientifique

g, G Utilise le format e, E ou T selon I’exposant

% Affiche le caractere %

L’indicateur de précision estconstitué du point décimal (.) seul ou accompagné d’un
nombre. Il ne s’applique qu’aux e E £ g G s. Il indique le nombre de chiffres a afficher
apres la virgule, ou le nombre de caractéres s’il est utilisé avec s. Le point décimal seul
indique une precision de 0.

La largeur de champs indigue le nombre minimum de caracteres de la sortie. Cette largeur
peut étre représentée par :
- Un entier décimal ne commence pas par 0. La sortie sera complétée a gauche par
des blancs.
- Un entier décimal commence par 0. La sortie sera complétée a gauche par des
Zeros.
- Le caractere * La valeur de I’argument suivant de type int sera interprétée comme
la largeur de champs. Exemple - int 1=5, a ; printf("%*d", 1, a);

Des drapeaux (flag) peuvent étre :
- La sortie sera cadrée a gauche, c’est I’option par défaut.

+ Les nombres seront affichés avec leur signe.

espace Si le premier caractére n’est pas un signe, place un espace au début.

0 La sortie sera complétée a gauche par des zéros.

Spécifie un format de sortie différent. Pour o, le premier chiffre sera

0. Pour x ou X, le préfixe correspondant Ox ou OX sera ajouté si le
résultat n’est pas nul. Pour e E ¥ g et G, la sortie comportera toujours
un point décimal ; pour ¥ et G, les zéros de terminaison seront
CONServes.

16

Annexe G : format de scanf/fscanf/sscanf

Le format de ces fonctions peut contenir :
- des espaces et des tabulations qui seront ignorés.
- des caractéeres ordinaires (différents de %) , dont chacun est supposé s’identifier au
caractére suivant du flot d’entrée autre qu’un caractére d’espacement.
- des spécifications de conversion compose d’un %, d’un caractére facultatif de
suppression d’affectation *, d’un nombre facultatif donnant la largeur maximum
du champ, d’un champ facultatif de précision h, 1 ou L.

Caractére de

conversion Type de I’argument Convertien
d int * entier sous forme décimale.
entier. L entier peut étre sous forme octal s’il est
i int * précédé de 0, ou hexadécimal s’il est précédé par Ox ou
OoX.
o int * entier sous forme octale.
X, X int * entier sous forme hexadécimale.
u unsigned Int * entier non signé sous forme décimal.
c char * caractere.
S char * chaine de caractéres sans espace.
e, F, g float * nombre en virgule flottant.
Caractére de e
précision Signification
h Placé avantd, i, o, x ou u, il indique que I’argument est de type
short *.
Placé avantd, i, o, x ou u, il indique que I’'argument est de type long
1 *. Placé devante, ¥ ou g, il indique que I’argument est de type double
*
L Place avante, f ou g, il indique que I’argument est de type long double

*

17

