ISIMA'1-TP n°3
Manipulation de pointeurs, Allocation dynamiquendémoire et manipulation de fichiers texte
Et le débugger

Le but de ce TP est de se familiariser avec leatpois et I'allocation dynamique de mémoire viacddécul vectoriel et
matriciel.

A : Produit scalaire de deux vecteurs
-1
SoientX etY deux vecteurs d’ordme, le produit scalaire d& etY estx [Y = nz XY, X,yoon.
i=0

Supposons que chaque vecteur est stocké danshier fiexte du format suivant:
3
1.0 203.0
La premiére valeur est I'ordre du vecteur, les walesuivantes sont les composants du vecteur.

A.1l. Ecrire une fonction de lecture de fichier decteur. Le nom de fichier doit étre passé en paramb'ordre et les
composants de vecteur peuvent étre soient passgmrameétre, soient retournés comme résultat detidon La
mémoire nécessaire au vecteur sera allouée dynamant apres la lecture de I'ordre de vecteur.g@stipn : mettez
I'ordre de vecteur en parametre et retournezdeeue)

Nous demandons d’utiliser un pointeur pour le parsale vecteur. Dans le cas ou l'ordre et les ceenyis de vecteur
sont passés en paramétre, I'emploi du passagerdmgiee par adresse est nécessaire afin que lkatéde lecture
puisse étre conservé.

A.2. Ecrire une fonction d’affichage de vecteur.Meeteur et son ordre seront passés en parametre.
A.3. Ecrire la fonction principale pour tester foactions avec les vecteurs d’ordre différent.
A.4. Ajouter une fonction de calcul du produit sied de deux vecteurs et tester a nouveau.

B: Produit Matrice-Vecteur
Soient A une matrice carrée des réels d'ordreet X un vecteur d’ordren. Nous allons calculely = AX, avec

n-1
Y, = Y AX;,i=01.,n-1X,yO0O"
j=0

Supposons que la matrice est aussi stockée ddithiar texte du format suivant:
3
1.02.03.0
203.04.0
3.04.05.0
La premiére valeur est I'ordre de matrice carrég suivantes sont les éléments de matrice.

B.1. Ecrire une fonction de lecture de fichier datmice en respectant les mémes consignes que A.&tructure suivante
sera utilisée dans l'allocation dynamique de mésmpour la matrice, qui se réalise en 2 étapesis atlouons d'abord
un tableau de pointeurs § étant le nombre de lignes de matrice), puis nossiia une allocation deéléments (icin
est le nombre de colonnes de matrice) pour chpqieur. De cette maniére, chaque pointeur dwegabpointe sur
une ligne de matrice.

B.2. Ecrire une fonction d'affichage de matrice nhatrice et son ordre seront passés en paramétre.
B.3. Madifier la fonction principale afin de test@s fonctions.
B.4. Ecrire une fonction de multiplication de megrivecteur en utilisant la fonction de produit ael écrite en A.4.

-1 -



B.5. Modifier la fonction principale et tester auveau.

Utilisation du débogueur :

Pendant la programmation, en dehors des erreutaxsgues et sémantiques que les compilateurs peuaétecter,
on peut aussi commettre d'autres erreurs : comsierdeurs de segmentation fault qui interrompentcution d’'un
programme ou celles qui nuisent le résultat d'eti@euCes erreurs sont plus difficiles a détedeurs corrections
demandent une plus grande attention et de minDa@s ce cas, l'utilisation d'un débugger peut eaéére plus
conviviale que legprintf s entre les lignes de code.

Un debugger permet de positionner des points ¢'at'e&écuter un programme pas a pas, de verdgevaleurs des
variables et la pile d'exécution. Dans ce TP, vpaoavez utilisergdb/ddd si vous travaillez sous Linux, ou
dbx/dbxtool si vous travaillez sous Uniddd etdbxtool sont les interfaces graphiques respectivegdibeet dbx, ils
ne sont pas forcément installées sur tous lesragste

1. Compilation

Afin qu'un programme puisse étre utilisé par unud@er, il faut le compiler avec l'optiey, qui permet de produire
des informations supplémentaires nécessaires dugdér. Exemple :

$ cc —g votrePrg.c —o votrePrgExec ou $ gcc votrePrg.c —o votrePrgExec -ggdb

2. Exécution

$ nomDuDebugger votreProgExec

nonDuDebugger doit étre remplacer par le nom du debugger ques\axez choisi. Par exemplegdb/ddd ou
dbx/dbxtool. Une fois cette commande exécutée, on est entné Htenvironnement d'exécution du débugger.
Qu'importe le debugger de votre choix, les premiétapes d'exécution et les commandes de basklentitues.

- On peut commencer par positionner un ou plusipaists d'arrét (stop) dans le code via la commande
stop oubreak. Exemple :
0 dbx: stop at numero_ligne
0 gdb/ddd : positionner le curseur au début d'une ligne plidggier sur le boutobreak
- Suppression d'un point d'arrét :
0 dbx: clear numero_ligne
0 gdb/ddd : positionner le curseur sur un point d’arrét mliguer sur le boutonlear

- On lance l'exécution du programme avec la commdod le boutonjun. L'exécution s'arréte au premier
arrét.

- Ensuite, on peut continuer I'exécution du progrengtape par étape en utilisant les commandgsou
step. next exécute completement l'instruction courastep entre a l'intérieur de l'instruction si celle-ci
est une fonction utilisateur.

- Les valeurs des variables au cours d'une exdcpgavent étre visualisées avec

o0 dbx: la commandgrint : print nom_variable ; print * pointeur affiche la valeur pointée par
(le contenu de la case mémoire pointée par) urtgumin
0 gdb/ddd : sélection d'une variablepuiscliquer sur le bouton display

- cont permet de continuer lI'exécution du programme jasgprochain point d’arrét (stop) ou terminer
I'exécution s'il n'y a plus de stop.

- quit permet de quitter I'exécution du programme.

- Les commandes concernant la pile d'exécution:sshere (ou boutonstack), up etdown.

- La commanddelp donne la liste de toutes les commandietp suivi du nom d'une commande ou du
nom d'une famille de commandes explique l'utilmatide la commande ou celle de la famille de
commandes.



