
 - 1 -

ISIMA 1 - TP n°3

Manipulation de pointeurs, Allocation dynamique de mémoire et manipulation de fichiers texte
Et le débugger

Le but de ce TP est de se familiariser avec les pointeurs et l’allocation dynamique de mémoire via le calcul vectoriel et
matriciel.

A : Produit scalaire de deux vecteurs

Soient X et Y deux vecteurs d’ordre n, le produit scalaire de X et Y est ., ,
1

0

n
n

i
ii YXYXYX ℜ∈=⋅ ∑

−

=

Supposons que chaque vecteur est stocké dans un fichier texte du format suivant:

3

1.0 2.0 3.0

La première valeur est l’ordre du vecteur, les valeurs suivantes sont les composants du vecteur.

A.1. Ecrire une fonction de lecture de fichier de vecteur. Le nom de fichier doit être passé en paramètre. L'ordre et les
 composants de vecteur peuvent être soient passés en paramètre, soient retournés comme résultat de fonction. La
 mémoire nécessaire au vecteur sera allouée dynamiquement après la lecture de l’ordre de vecteur. (suggestion : mettez
 l'ordre de vecteur en paramètre et retournez le vecteur)

Nous demandons d’utiliser un pointeur pour le parcours de vecteur. Dans le cas où l'ordre et les composants de vecteur
sont passés en paramètre, l'emploi du passage de paramètre par adresse est nécessaire afin que le résultat de lecture
puisse être conservé.

A.2. Ecrire une fonction d’affichage de vecteur. Le vecteur et son ordre seront passés en paramètre.

A.3. Ecrire la fonction principale pour tester vos fonctions avec les vecteurs d’ordre différent.

A.4. Ajouter une fonction de calcul du produit scalaire de deux vecteurs et tester à nouveau.

B: Produit Matrice-Vecteur

Soient A une matrice carrée des réels d’ordre n et X un vecteur d’ordre n. Nous allons calculer Y = AX, avec

., ;1 ..., ,1 ,0 ,
1

0

n
j

n

j
iji YXniXAY ℜ∈−== ∑

−

=

Supposons que la matrice est aussi stockée dans un fichier texte du format suivant:

3

1.0 2.0 3.0

2.0 3.0 4.0

3.0 4.0 5.0

La première valeur est l’ordre de matrice carrée, les suivantes sont les éléments de matrice.

B.1. Ecrire une fonction de lecture de fichier de matrice en respectant les mêmes consignes que A.1. La structure suivante
 sera utilisée dans l'allocation dynamique de mémoire pour la matrice, qui se réalise en 2 étapes : nous allouons d'abord
 un tableau de n pointeurs (n étant le nombre de lignes de matrice), puis nous faisons une allocation de n éléments (ici, n
 est le nombre de colonnes de matrice) pour chaque pointeur. De cette manière, chaque pointeur du tableau pointe sur
 une ligne de matrice.

B.2. Ecrire une fonction d'affichage de matrice. La matrice et son ordre seront passés en paramètre.

B.3. Modifier la fonction principale afin de tester ces fonctions.

B.4. Ecrire une fonction de multiplication de matrice-vecteur en utilisant la fonction de produit scalaire écrite en A.4.

 - 2 -

B.5. Modifier la fonction principale et tester à nouveau.

Utilisation du débogueur :

Pendant la programmation, en dehors des erreurs syntaxiques et sémantiques que les compilateurs peuvent détecter,
on peut aussi commettre d'autres erreurs : comme des erreurs de segmentation fault qui interrompent l’exécution d’un
programme ou celles qui nuisent le résultat d'exécution. Ces erreurs sont plus difficiles à détecter, leurs corrections
demandent une plus grande attention et de minutie. Dans ce cas, l'utilisation d'un débugger peut s'avère être plus
conviviale que les printf s entre les lignes de code.

Un debugger permet de positionner des points d'arrêt, d'exécuter un programme pas à pas, de vérifier les valeurs des
variables et la pile d'exécution. Dans ce TP, vous pouvez utiliser gdb/ddd si vous travaillez sous Linux, ou
dbx/dbxtool si vous travaillez sous Unix. ddd et dbxtool sont les interfaces graphiques respectives de gdb et dbx, ils
ne sont pas forcément installées sur tous les systèmes.

1. Compilation

Afin qu'un programme puisse être utilisé par un débugger, il faut le compiler avec l'option –g, qui permet de produire
des informations supplémentaires nécessaires aux débugger. Exemple :

$ cc –g votrePrg.c –o votrePrgExec ou $ gcc votrePrg.c –o votrePrgExec -ggdb

2. Exécution

$ nomDuDebugger votreProgExec

nomDuDebugger doit être remplacer par le nom du debugger que vous avez choisi. Par exemple : gdb/ddd ou
dbx/dbxtool. Une fois cette commande exécutée, on est entré dans l'environnement d'exécution du débugger.
Qu'importe le debugger de votre choix, les premières étapes d'exécution et les commandes de base sont identiques.

- On peut commencer par positionner un ou plusieurs points d'arrêt (stop) dans le code via la commande
stop ou break. Exemple :

o dbx : stop at numero_ligne
o gdb/ddd : positionner le curseur au début d'une ligne puis cliquer sur le bouton break

- Suppression d’un point d’arrêt :
o dbx : clear numero_ligne
o gdb/ddd : positionner le curseur sur un point d’arrêt puis cliquer sur le bouton clear

- On lance l'exécution du programme avec la commande (ou le bouton) run . L'exécution s'arrête au premier
arrêt.

- Ensuite, on peut continuer l'exécution du programme étape par étape en utilisant les commandes next ou
step. next exécute complètement l'instruction courante, step entre à l'intérieur de l'instruction si celle-ci
est une fonction utilisateur.

- Les valeurs des variables au cours d'une exécution peuvent être visualisées avec
o dbx : la commande print : print nom_variable ; print * pointeur affiche la valeur pointée par

(le contenu de la case mémoire pointée par) un pointeur.
o gdb/ddd : sélection d'une variable puis cliquer sur le bouton display

- cont permet de continuer l'exécution du programme jusqu'au prochain point d’arrêt (stop) ou terminer
l'exécution s'il n'y a plus de stop.

- quit permet de quitter l'exécution du programme.
- Les commandes concernant la pile d'exécution sont : where (ou bouton stack), up et down.
- La commande help donne la liste de toutes les commandes. help suivi du nom d'une commande ou du

nom d'une famille de commandes explique l'utilisation de la commande ou celle de la famille de
commandes.

