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Introduction

Le Fortran est LE langage du Calcul Scientifique. Le mot Fortran signifiait, & I’origine, IBM Ma-
thematical FORmula TRANslation System, puis a été abrégé en FORmula TRANslation. C’est le
plus vieux langage de programmation de haut niveau puisqu’il date de 1954. Les sous—programmes
(procédures et fonctions) sont apparus en 1958 avec la deuxiéme version du langage.

Dans les années 60, le langage est devenu tellement populaire que d’autres constructeurs ont
commencé & produire leur propre compilateur. Ce qui a conduit & une multiplication de dialectes
Fortran. Il a été alors reconnu que cette divergence croissante n’était dans ’intérét ni des program-
meurs, ni des constructeurs. C’est ainsi que Fortran 66 est devenu en ... 1972 le premier langage
a étre officiellement standardisé. Depuis c’est une tradition Fortran d’adopter comme numéro de
version 'année de la premiére mouture de la norme (qui n’est pas celle de Dofficialisation de la
norme). En 1980, c’est le Fortran 77 qui a été adopté par I'ISO comme standard international.

11 a fallu ensuite attendre 1991-1992 pour que le Fortran 90 soit officiellement adopté, aprés des
années de conciliabules & cause du sort & réserver au Fortran 77, pour ne pas perdre I’énorme quan-
tité de bibliothéques scientifiques existantes (fiabilisées par de nombreuses années d’utilisation).
C’est pour cela que Fortran 90 «comprend» Fortran 77. A noter que les premiers compilateurs
Fortran 90 ne sont apparus qu’en 1994. La norme la plus récente est le Fortran 95 dont les plus
vieux compilateurs date de 1999.

Les apports de Fortran 90 sont considérables. Voici une liste de quelques nouveautés apportées
par le Fortran 90.

— écriture du programme en «format librey, qui remplace avantageusement ’ancien «format

fixey de Fortran 77, hérité des cartes perforées

— objet de types dérivés

— plus de structures de controle pour éviter les goto «sauvages»

— expressions tableaux

— procédures et fonctions internes (¢a n’existe pas en Fortran 77!1)

— interfaces, modules pour fiabiliser la communication entre unités de programme

— vocation des arguments, arguments optionnels, passage par mot clé

— nouvelles fonctions intrinséques

Nous n’avons pas l'intention de faire une présentation compléte de toutes les possibilités of-
fertes par le Fortran 90. Nous ne présenterons que les aspects les plus adaptés pour les TP de
Programmation Numérique. Bien que Fortran 90 comprenne Fortran 77, nous ne parlerons pas des
antiquités du Fortran 77 telles que : étiquettes, goto, common, data,... car devenues complétement
obsolétes.
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CHAPITRE 1

(GENERALITES, TYPES SCALAIRES

1.1 Généralités

Tout le jeu de caractéres usuels est permis en Fortran 90, sauf qu’il n’y a pas de différence
entre minuscules et majuscules. En «format libre» (le format par défaut) les lignes peuvent étre
de longueur quelconque & concurrence de 132 caractéres. Le caractére ! rencontré sur une ligne
indique que tout ce qui suit est un commentaire. Les chaines sont délimitées par des apostrophes
(?) ou des guillemets (**).

Il est possible de placer plusieurs instructions sur la méme ligne en les séparant par un point—
virgule ;

x=0 ! une seule instruction sur ligne
i=i+1; x=(2*i-1)*h ! deux instructions sur une ligne
Nom=’SATAN’ ! une chaine de caracteres delimitee par des ’
PNom=?’Lucifer?’ ! une chaine de caracteres delimitee par des ’’

La fin de ligne est donc un séparateur d’instructions. Si une instruction est trop longue, on peut
Iécrire sur plusieurs lignes grace au caractére &, comme dans

print *,’Montant HT : ’,montant_ht, &
? TVA : ?,tva , &
’Montant TTC : ’,montant_ttc

Lors de la coupure d’une chaine, la suite de la chaine doit étre précédée de &

print *,’Entrer un nombre entier &
&compris entre 10 et 100 ?

Enfin la structure générale d’un programme Fortran 90 (en format libre) est la suivante

program MONPROG ! debut du programme
implicit none ! obligatoire pour eviter des problemes
! toutes les declarations

! instructions executables

end program MONPROG ! fin du program
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Le «format fixe» correspond au format du Fortran 77. Il n’est pas recommandé pour écrire des
programmes Fortran 90. C’est plus pour permettre la compilation en Fortran 90 de programmes
en Fortran 77 grace a4 une option de compilation (-qfixed sur IBM, -fixedform sur SGI). Il
est strictement interdit d’utiliser les deux formats dans un méme fichier (méme dans des sous—
programmes distincts) car les commentaires en «format fixe» (en fait ceux de Fortran 77) ne sont

pas les mémes en «format libre» et le compilateur vous le fera savoir !

Remarque 1.1 Les mots clés du Langage Fortran 90 (tels que program, end, integer, real,
print, if,...) ne sont pas des mots réservés. Autrement dit, il est possible de les utiliser comme
identificateurs sans pour autant qu’ils perdent leur signification prédéfinie. Le choiz de la «bonne
significationy se fait alors en fonction du contexte avec des (mauvaises) surprises éventuelles. ¢

1.2 Les types scalaires

En Fortran 90, il existe cing types de variables scalaires

character pour les chaines d’un ou plusieurs caractéres.

logical pour les variables booléennes, i.e. ne prenant que deux valeurs possibles :
.true. (vrai) ou .false. (faux).

real pour les nombres réels.

integer pour les nombres entiers relatifs.

complex pour les nombres complexes, i.e. de la forme x + iy.

La forme générale d’une déclaration de variable est!
type [,liste_attributs ::] liste_variables

La liste d’attributs précise s’il s’agit d’une constante, d’un tableau, d’un pointeur, la visibilité de
la variable, etc... Les attributs peuvent étre

parameter pour une constante symbolique
dimension(...) pour un tableau

allocatable pour un tableau dynamique

pointer pour un objet accessible par pointeur
target pour un objet cible potentiel d’un pointeur
save pour un objet rémanent

intent(...) pour un paramétre formel

optional pour un paramétre formel

public, private pour une entité définie par un module

Remarque 1.2 1] existe un type double precision pour les nombres réels, mais on verra plus
tard qu’il n’est qu’un sous—type du type real. o

Voici quelques déclarations simples

1La notation [ ] signifie que le contenu des crochets peut apparaitre 0, une ou plusieurs fois.
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character :: sexe ! un caractere

character(len=10) :: nom ! chaine de 10 caracteres au plus
character(len=+*) :: prenom ! chaine de longueur inconnue
logical 11 cel ! celibataire ou pas 7

real :: taille, poids

integer 11 age

Les types scalaires ci—dessus présentent des caractéristiques (encombrement mémoire, do-
maine couvert, précision, etc.) qui varient d’une machine & une autre. Par exemple, un réel en
double précision sur IBM RS/6000 ou NEC SX5 correspond & un réel en simple précision sur
CRAY T3E. Méme les caractéres nécessitent une attention particuliére. En effet, si un caractére
latin se code sur 1 Octet, 2 Octets seront nécessaires pour coder les idéogrammes des alphabets
chinois ou japonais.

Les types scalaires s’adaptent pour permettre & 'utilisateur de spécifier ses besoins précis,
en précision ou en encombrement mémoire, sans trop tenir compte de la machine cible. Les types
scalaires integer, real, logical et character deviennent des noms génériques désignant plusieurs
sous—types ou variantes accessibles grace au paramétre de type kind .

Voici quelques déclarations de variables avec variantes

integer(4) i,j ! entier court
integer(kind=8) :: k,1 ! entier long
real (kind=4) X, ¥ ! reel simple precision
real(8) :: Tol ! reel double precision

En l'absence du paramétre kind, c’est la variante par défaut qui est sélectionnée. A noter
que le paramétre kind est aussi une fonction intrinséque qui renvoie la variante de la variable
en argument. Mais cette fonction intrinséque permet surtout de faire des déclarations avec des
variantes quelle que soit la machine.

kind (x) retourne la valeur associée au sous—type de la variable x
kind (0) retourne la valeur associée au type entier par défaut

kind (0.0) retourne la valeur associée au type réel par défaut

kind (1.0) retourne la valeur associée au sous—type réel simple précision
kind (1.40) retourne la valeur associée au sous—type réel double précision

real (kind=kind(1.d0)) permet de déclarer un réel en double précision quelle que soit la ma-
chine.

La notation 1.d0 est la forme exponentielle des réels en double précision (i.e. elle est équivalente
a1.e0).

1.3 Le typage implicite

Une survivance du Fortran préhistorique est que, en 'absence de toute déclaration, les
variables dont les noms commencent par

i,j,k,1l,m,n sont considérées comme de type integer;
a,b,...,h,0,p,...,z sont considérées comme de type real.

1l s’ensuit des erreurs difficiles & détecter, par exemple lorsqu’on tape malencontreusement j au
lieu de i. Pour forcer le compilateur & vérifier que chaque variable & été déclarée, il faut placer au
début du programme l’instruction

implicit none

qui inhibe le typage implicite.
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1.4 Les constantes littérales

Pour introduire une constante entiére dans un programme, on 1’écrit simplement sous la
forme décimale habituelle, avec ou sans signe, comme

-2365  +7665452 467498

Pour les constantes réelles, on a le choix entre la forme décimale ou la forme exponentielle,
comme dans

-0.314159 -.314159
l.e-5 le-5 3.88eb

Pour les réels en double précision, la forme exponentielle s’écrit avec d au lieu de e
1.40 -.76543d-12
Les constantes chaines de caractéres se codent & l’aide d’apostrophes comme
’jimmy’ "Shiva"

Lors de Pécriture d’une constante, on peut spécifier le sous—type désiré en la suffixant (pour
les nombres) ou préfixant (pour les chaines) par la valeur du sous—type voulu en utilisant le caractére
__comme séparateur :

256_4

3.14259_4
687.9865209876_8
1_’Selena’

constante entier court
constante reel simple
constante reel double
chaine 1 octet/caractere

1.5 Les constantes symboliques

En Fortran 90 les constantes symboliques ne sont plus nécessairement de types scalaires
(comme en Fortran 77). L’appel a certaines fonctions élémentaires est possible lors de la déclaration.
Pour déclarer une constante symbolique, il suffit de sélectionner ’attribut parameter comme dans

real, parameter :: pi=3.141516

character (len=%), parameter :: Name=’>SATAN’, Surname="Lucifer"

integer, parameter :: Nmax1=10, Nmax2=30

integer, parameter :: Res=mod(Nmax1,Nmax2) ! fonction elementaire MOD
integer, parameter :: Nbv=abs(Nmax1l-Nmax2) ! fonction elementaire ABS

Les constantes symboliques peuvent étre utilisées pour rendre les déclarations de variables
avec variantes un peu plus portables.

integer, parameter :: rdouble=8
integer, parameter :: ishort=4
integer (kind=ishort) :: i, j

real (kind=rdouble) X, ¥, 2

En cas de probléme de variante, avec une machine, il suffit de modifier les constantes symboliques
correspondantes.
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1.6 La précision des nombres

Tl existe deux fonctions (entiéres), select_int_kind et select_real_kind prédéfinies qui
permettent de faire le lien entre les besoins de I'utilisateur et le numéro de variante correspondant
a un domaine donné.

select_int_kind(r) fournit 'entier qui correspond au numéro de variante du type integer ac-
ceptant au moins r chiffres décimaux, c’est—a—dire les entiers dans l'inter-
valle [-10", 10"]. La fonction retourne -1 si aucun sous—type ne correspond
4 la demande.

select_real _kind(p,r) fournit ’entier qui correspond au numéro de variante du type real
susceptible de représenter des nombres réels avec une précision de p et une
étendue de r, i.e. des réels autorisant p chiffres significatifs et un intervalle
de valeurs positives au moins égal & [10~", 107]. La fonction retourne -1 si
la précision demandée n’est pas disponible, -2 si ’étendue desirée n’est pas
disponible, et -3 si ni la précision ni I’étendue ne sont disponibles.

Avec les fonctions select_int_kind et select_real_kind, on peut maintenant écrire des
programmes vraiment portables. Voici quelques déclarations avec variantes indépendantes de la
machine.

integer, parameter :: rprec=select_real_kind(p=9,r=50)
integer, parameter :: iprec=select_int_kind(r=2)

integer(kind=iprec):: i, j, k

real (kind=rprec) i1 X, y, Z

Remarque 1.3 La précision et I’étendue peuvent aussi étre évaluées en utilisant les fonctions
intrinséques precision et range, voir ch. 7. o

1.7 Initialisation

L’initialisation d’une variable se fait & la déclaration par simple affectation comme dans
I’exemple suivant.

real, parameter :: Pi=3.14159, Rayon=6500

character(len=*) :: Jour="Lundi", Mois="Janvier"

integer :: 1=0, nbr=90

real :: circ=2xPi*Rayon ! Initialisation avec une expression
real :: prec=epsilon(1.0) ! Avec une fonction intrinseque autorisee
real(8) :: x=0.d0

La fonction epsilon renvoie la quantité considérée comme négligeable devant 1, pour le sous—type
de argument (ici réel simple). En principe les fonctions intrinséques ne sont pas autorisées lors de
Iinitialisation sauf quelques-unes comme abs, mod, epsilon,...
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CHAPITRE 2

EXPRESSIONS, INSTRUCTIONS
ELEMENTAIRES

2.1 Les expressions

On distingue 3 types d’expressions en Fortran :

— les expressions arithmétiques

— les expressions logiques

— les expressions de type texte
Chacun des trois types scalaires dispose de ses propres opérateurs intrinséques. Les expressions sont
donc construites & partir de 'un au moins de ces opérateurs et d’au moins un opérande. Dans le
cadre de ce cours (Programmation numeérique) on ne s’intéressera qu’aux expressions arithmétiques
et logiques.

2.1.1 Les expressions arithmétiques

Les expressions arithmétiques sont construites a ’aide d’opérateurs arithmétiques usuels. Ils
sont par ordre de priorité décroissante

*x élévation 3 la puissance
*x / multiplication et division
+ - addition et soustraction

En cas de priorités identiques, les calculs se font de gauche & droite. Une expression arithmé-
tique peut aussi étre construite & partir de fonctions mathématiques intrinséques ou définies par
I'utilisateur. Voici quelques exemples d’expressions arithmétiques

x-y*%3/100.0 correspond & = — (y3/100)
a/b/c correspond & a/(bc)
-a+c/d correspond & (—a) + (¢/d)
Xkky**Z correspond & (a¥)?

On peut utiliser les parenthéses pour forcer la priorité et, accessoirement rendre le pro-
gramme plus lisible. Les expressions précédentes deviennent

x- ((y**3)/100)
a/ (b*c)

15
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—a+(c/d)
(x**y) **z)

Remarque 2.1 (Quotient entre deux entiers) FEn Fortran 3/2 vaut 1, tandis que 3.0/2.0
vaut (approrimativement) 1.5. Quand les 2 opérandes sont de type entier le résultat de la division
est le quotient entier. Il faut donc bien écrire les constantes littérales de type real pour éviter les
(mauvaises) surprises. o

2.1.2 Les expressions logiques

Les expressions logiques sont construites & partir de comparaison entre expressions numé-
riques et d’opérateurs logiques.

Fortran 90 (comme Fortran 77) dispose de 6 opérateurs de comparaison, présentés dans la
Table 2.1.2. Comme Fortran 90 «comprendy Fortran 77, on peut utiliser indifféremment ’ancienne
notation (i.e. celle de Fortran 77) ou la nouvelle, plus lisible.

ancienne notation nouvelle notation signification

.1t. < inférieur &

.le. <= inférieur ou égal &
.gt. > supérieur a

.ge. >= supérieur ou égal &
.eq. == égal a

.ne. /= différent de

TAB. 2.1 — Opérateurs de comparaison

La priorité des opérateurs de comparaison est inférieure a celle de tous les opérateurs arith-
métiques. Les expressions suivantes n’ont donc pas besoin de parenthéses.

x**2 < a+b
bxx2-4.0%axc .gt. 0
-b+sqrt(delta) < .5*cos(2.0*omega)

Remarque 2.2 (Egalité entre réels) L’opérateur de comparaison == ne doit étre utilisé pour
des expressions réelles qu’avec beaucoup de précaution car il n’y a pas absolue égalité entre deux
réels. o

On peut également combiner deux expressions logiques & 1’aide des opérateurs logiques
classiques, présentés dans la Table 2.1.2.

Remarque 2.3 On peut imprimer une expression logique. On obtient alors un F (pour .FALSE. )
ou un T (pour .TRUE.) o
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opérateur signification

.and. et logique, i.e. vrai si les deux opérandes sont vrais
.or. ou logique, i.e. vrai si au moins un opérande est vrai
.not. négation
.eqv. équivalence logique, i.e. vraie si les deux opérandes sont tous vrais ou tous faux,

fausse dans le cas contraire

.neqv. non équivalence logique, négation de ’opérateur précédent.

TAB. 2.2 — Opérateurs logiques

2.2 Les instructions élémentaires

2.2.1 L’affectation

L’ affectation se fait avec le symbole = d’égalité. La forme la plus simple pour affectation
est

variable = constante
La forme générale est

variable = expression
comme dans

s=Pi*R**2
h=sin(a)**2
boole=(x<y .or. abs(z)<eps) ! affectation d’une expression logique

2.2.2 Entrées/Sorties

La saisie des données au clavier se fait par l'instruction read simple (il existe une autre
forme plus élaborée pour les fichiers).

read *,varl,var2,...

Les variables var1, var2,... sont alors entrées séparées par une virgule.

L’affichage des données & ’écran se fait soit & l’aide de l'instruction print, soit avec l'ins-
truction write qui est aussi utilisée pour les fichiers, voir ch. 8. La forme générale pour print est
la suivante

print fmt,elementl,element2,...

fmt est soit le caractére *, qui représente la sortie standard (i.e. écran), ou une spécification de
format sous forme de chaine de caractéres'. Voici quelques exemples d’instructions d’impression
simple

1On rappelle qu’une chaine de caractére est délimitée par (*) ou des guillemets (")
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print *,na=n’a’n b=",b," C=",C
print *,’La solution est x=7,x

Pour formater une sortie, il faut spécifier un format. En Fortran 90, la spécification de format
se fait & l’aide d’une chaine de caractéres. On peut spécifier du texte, des nombres, des sauts de
lignes,... comme dans

print ’("a=",F15.6,"b=",E15.8)’,a,b
print ’(/"x=",E15.8/)7,x
Voici les principaux champs utilisés pour spécifier un format.

A Lecture ou impression d’une chaine telle quelle. La longueur du champ imprimé
sera celle de la chaine.

Im Lecture/Impression d’un entier sur m colonnes. Il y a cadrage & droite dans le
champ imprimé.

Fm.n Lecture/Impression d’un réel sur m colonnes avec n chiffres apres la virgule. Il
faut tenir compte de la virgule et du signe éventuel du réel dans le choix de m.

Em.n Lecture/Impression d’un réel en notation exponentielle sur m colonnes avec n
chiffres apreés la virgule.

Gm.n Fonctionne comme Fm.n mais la représentation dépend de son ordre de grandeur.
Si le réel est trop grand, il s’écrira avec un exposant.

Changement de ligne.
b4 Ecriture d’un espace

On peut mentionner un facteur de repétition (une constante non nulle sans signe) devant
n’importe quel descripteur. Par exemple

314
est équivalent &
14, 14, 14

11 est aussi possible d’appliquer ce facteur de répétition & un groupe de descripteurs placés entre
parentheéses :

2(13,F15.8)
est équivalent 3

I3,F15.8,I3,F15.8

Remarque 2.4 Une spécification de format est une chaine de caractéres. Elle peut donc étre
stockée dans une variable ou une constante symbolique de type chaine. o

Voici un programme qui résume (presque) tout.

program AFFICHE
implicit none
real(8) :: x,pi
integer :: i=12345
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print °(//,27("-"),/,"--- AFFICHAGE D’’ENTIERS ---"/,27("-"),/)’
print ’("Entier format adapte : ", I6)7,1

print ’("Entier format non adapte : ", I4)7,i%i

print ’("Avec facteur de repetition : ",3I6)7,1i,2%1,3x*i

x=1.d0; pi=4.d0*atan(x)

print *(//,27("-"),/,"--- AFFICHAGE DE REELS ---"/,27("-"),)’
print ’("Reel forme naturelle : ",F12.8)7,pi
print ’("Reel forme exponentielle : ",E15.8)7,pi
print ’("Reel format non adapte : ",F10.8)7,100.d0*pi*pi

end program AFFICHE

L’exécution de ce programme donne.

Entier format adapte ¢ 12345
Entier format non adapte T okkokok
Avec facteur de repetition ;12345 24690 37035

Reel forme naturelle : 3.14159265
Reel forme exponentielle : 0.31415927E+01
Reel format non adapte s kokokokokokkokokk
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CHAPITRE 3

STRUCTURATION D’UN PROGRAMME
FORTRAN

Le Fortran 77 ne dispose que de 2 structures de controdle : la boucle avec compteur et
I’alternative. Les branchements inconditionnels & ’aide de goto permettaient d’avoir les struc-
tures répétitives pré et post testées. Fortran 90 dispose de nouvelles structures qui la classeraient
presque dans la catégorie des langages structurés. Toutefois, la notion de branchement n’a pas
totalement disparu puisque sont apparus de nouvelles instructions de branchement inconditionnel
(exit, cycle). Bien sir les vieilles structures de Fortran 77 sont toujours acceptées, par souci de
compatibilité.

3.1 Structures alternatives

L’alternative simple s’écrit

if (condition) then
action
endif

ou encore

if (condition) then
actionil

else
action?2

endif

Voici un petit exemple d’alternative

if (x>y) then

print *,x,’ est plus grand que ’,y
else

print *,x,’ est plus petit ou egal a ’,y
endif

Dans ce petit exemple, chaque ligne représente une instruction & part entiére. Donc si on veut en
mettre plusieurs sur la méme ligne, il faut prévoir des «;». Voici le petit exemple ci—dessus sous
forme plus concentrée (pas forcément plus lisible).

21
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if (x>y) then; print *,x,’ est plus grand que ’,y
else; print *,x,’ est plus petit ou egal a ’,y ; endif

Lorsque ’action se limite & une seule instruction, l'alternative simple peut s’écrire aussi
if (condition) action
Par exemple, ’alternative simple suivante

if (x>imax) then
imax=x
endif

peut se réduire &
if (x>imax) imax=x
L’ alternative compléte (avec des "sinon si") est de la forme

if (condition_1) then
action_1

else if (condition_2) then
action_2

else if (condition_n) then
action_n

else
action_0

endif

Notez qu’il n’y a qu’un seul endif qui ferme ’alternative.

Exemple 3.1 (Racines d’un polynéme de degré 2) Voici un programme qui calcule toutes
les racines d’un trindme en distinguant les différents cas (racines réelles, complexes, doubles, dis-
tinctes).

program RACINEQ2

implicit none ne jamais oublier

1
integer, parameter :: ir8=kind(1.d0) ! sous-type == real double
real (kind=ir8), parameter :: eps=1d-12 ! precision des calculs
real (kind=ir8) :: a,b,c ! coef. du trinome
real (kind=ir8) :: x1,x2, delta
complex (kind=ir8) 11 zl,z2 ! pour les racines complexes

! lecture des coefficients

print *,’Entrer les coef. reels: a, b, c ?’
read *,a,b,c

if (abs(a)>eps) then

delta=b*xb-4.0%*ax*xc ! calcul discriminant

if (delta> 0) then ! cas classique : 2 racines reelles
x1=.5%(-b-sqrt(delta))/a
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x2=.5%(-b+sqrt(delta))/a

print *,"Deux racines reelles distinctes"
print ’("x1=",F12.8," x2=",F12.8)’,x1,x2

elseif (delta<0) then ! 2 racines complexes
x1=-.5%b/a ! partie reelle des racines
x2=.b*sqrt(abs(delta))/a ! partie imag. (valeur absolue)
zl=cmplx(x1,-x2) ! conversion -> zl
z2=cmplx(x1,x2) ! conversion -> z2

print *,"Deux racines complexes :"
print ’("z1=(",2F12.8,")"," z2=(",2F12.8,")")’,z1,22

else ! equation (x+.5%b/a)**2=0
x1=-.5%b/a;
print *,’ ("Une racine double",F12.8)7,x1
endif
else ! equation bx+c=0
if (abs(b)>eps) then
x1=-c/b

print ’("Une racine reelle x=",F12.8)7,x1
else; print *,’Equation indeterminee ’; endif
endif
end

Voici quelques exemples d’exécution

Entrer les coef. reels: a, b, c

1.5, 2, 5.1897654

Deux racines complexes :

z1=( -0.66666667 -1.73649047) z2=( -0.66666667 1.73649047)

Entrer les coef. reels: a, b, c

3.14159, 10.6573, 2

Deux racines reelles distinctes

x1= -3.19294328 x2= -0.19938353

3.2 Structures itératives (boucles)

Il y a trois types de structures itératives en Fortran 90. A noter que seule la boucle avec
compteur do existe en Fortran 77.

3.2.1 Boucle avec compteur (boucle do)
C’est I’équivalent de la boucle for du PASCAL. La forme générale est la suivante

[nom:] DO var=debut,fin [,pas]
instructions
END DO [nom]
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Avec

nom un identificateur quelconque de la boucle. On verra plus loin son utilité quand on veut "casser"
une boucle.

var un identificateur d’une variable de type integer
debut, fin, pas expressions quelconques de type integer. Si pas est omis, il est pris par défaut

égal & 1.
Voici une boucle qui calcule la somme des entiers de 1 & n.
s=0
do i=1,n ! le pas vaut 1 par defaut
s=s+i
end do

Dans le cas ou on ne fait que la somme des nombres impairs, la boucle devient

s=0

do i=1,n,2
s=s+i

end do

3.2.2 Boucle "tant que" (do while)

C’est ’équivalent de la boucle while du PAscaAL. Cette structure de boucle n’existe pas en
Fortran 77. La forme générale est la suivante.

[nom:] DO WHILE (expression_logique)
instructions
END DO [nom]

Pour que la boucle puisse se terminer, il faut que la valeur de expression_logique ait des chances
d’étre modifiée dans les instructions internes. Sinon, on obtient une boucle infinie.

Exemple 3.2 (Limite d’une suite récurrente) Soit la suite récurrente définie par

ud + 3auy,
unJrl = 2 ) Up = ]-
3uz +a

oll a est un réel strictement positif. La suite u,, converge vers v/a, pour a > 0 donné.

program SUITE_RECC
implicit none
integer, parameter :: IterMax=100
integer, parameter :: ir8=kind(1.d0)
real(8), parameter :: eps=1d-6

pour inhiber le typage implicite
nb max d’iterations

sous-type reel double

precision des calculs

real (kind=ir8) t:a

real (kind=ir8) :: u,ul ! termes courant et precedant
integer 11 iter

real (kind=ir8) :: erreur

! Lecture de a et alpha
print *,’Entrer le reel a >0 :’
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read *,a

erreur=1

ul=1

iter=0

do while (erreur>eps .and. iter<IterMax)
iter=iter+1

u=(ul*ul*ul+3*a*ul)/(3*xul*ul+a) ! terme courant
erreur=abs (u-ul) /u ! erreur relative entre u et ul
ul=u

end do

print ’("La limite de la suite est ",F12.8) ’,u
print ’("Apres ",I4," iteratiomns ")’,iter

end program SUITE_REC
Voici quelques exécutions

Entrer le reel a >0 :

3.14159
La limite de la suite est 1.77245310
Apres 4 iteratiomns

Entrer le reel a >0 :

32.184789
La limite de la suite est 5.67316393
Apres 5 iterations

Remarque 3.1 Si le programme est destiné & un ordinateur vectoriel ou paralléle, il ne faut
utiliser la boucle do while que lorsque la situation s’y préte vraiment. En effet le programme
obtenu risque de ne pas étre trés optimisé en temps car cette boucle est fortement séquentielle. ©

3.2.3 Sortie anticipée d’une boucle : exit

Cette instruction sert & interrompre le déroulement d’une boucle. Elle peut apparaitre dans
n’importe quelle boucle, avec ou sans compteur. Voici un exemple simple.

alpha=0.67
s=stock ! stock>0
do i=1,n
if (s<0) exit ! on arrete si s devient negatif
s=s-alpha*real (i) ! real(i) convertit l’entier i en reel
end do

Lorsque 'instruction exit apparait dans une boucle qui est elle-méme imbriquée dans une
autre boucle, elle ne met fin qu’a la boucle la plus interne. Dans ’exemple suivant

i=0;
do while (i<m)
u=1;

do j=1,n
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s=m*m-1ix*j
if (s<0) exit
u=s*u
end do
print *,"i=",i,
end do

u=",sqrt(u)

seule la boucle en j est prématurément arrétée. Si on veut interrompre la boucle en i, on peut
toujours ajouter une deuxiéme instruction exit mais il y a mieux. Il suffit de donner un nom & la
boucle et de préciser juste aprés l'instruction exit le nom de la boucle & interrompre. Si on veut
sortir de la boucle en i dans ’exemple ci—dessus, il faut donc faire

i=0;
Julie : do while (i<m) ! on donne un nom a la boucle critique
u=1;
do j=1,n
s=m*m-1ix*j
if (s<0) exit Julie ! on sort de la boucle julie
u=s*u
end do
print *,"i=" i " u=", sqrt(u)
end do Julie ! fin Julie

3.2.4 Bouclage anticipé : cycle

Cette instruction permet de passer prématurément au tour de boucle suivant. Elle marche
avec toutes les boucles avec les mémes mécanismes que ’instruction exit. Pour les boucles avec
compteur non prédéfini, il faut veiller & ne pas "cycler" avant d’avoir incrémenter le compter.

j=0
Emma : do while (j<10)
j=j+1
s=real (j*j)
do i=1,n
s=s+i
if (s>seuil) cycle Emma ! on passe au prochain tour de boucle de Emma
end do
print *,"Somme =",s
end do emma

3.2.5 Boucle infinie : instruction do

Il existe une boucle "sans fin" en Fortran, qui peut sembler curieuse & premiére vue. La
forme générale de cette boucle est la suivante.

[nom :] do
end do

En pratique, il faut arréter la boucle avec l'instruction exit comme dans I’exemple suivant.
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do
print *,"Entrez un entier positif"
read *,i
if (i>0) exit ! on arrete si i>0
end do

3.3 Structure de choix multiple : I'instruction select case

Fortran 90 (contrairement & la version 77) dispose d’une vraie structure de choix multiple
avec l'instruction select case. La forme générale est la suivante (avec la convention []1 pour les
options).

[nom :] select case (exp_scal)
case (selecteur) [nom]

[ case default [nom]
..

end select [name]

Avec :
exp_scal expression scalaire de type integer ou character

selecteur liste composée de 1 ou plusieurs éléments de la forme
— valeur
— intervalle de la forme [valeur1] :valeur2 ou valeurl :[valeur?2]
les valeurs concernées devant étre du méme type que exp_scal.

Mais sans plus attendre, voici un exemple "parlant".

program SELECTCASE
implicit none
integer :: n
print *,"Donnez un nombre entier
read *,n
select case (n)
case (0)
print *,"n=0"
case (1,2)
print *,"n=1 ou n=2"
case (3:10)
print *,"3 <= n <= 10"
case (11:)
print *,"n >= 11"

case default
print *,"n < O"
end select
end program SELECTCASE

Les lignes de la forme case (...) sont des instructions & part entiére. Si on veut les placer
sur la méme ligne que ’instruction suivante, il faut utiliser un point—virgule comme séparateur.
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3.4 L’instruction stop

L’instruction stop remplace avantageusement les branchements "sauvages" & instruction
end, de fin de programme, 3 I’aide de 'instruction goto. L’instruction stop peut s’utiliser n’importe
ou comme n’importe quelle instruction exécutable. On peut donc écrire :

if (...) then
print *,"Probleme insurmontable -- on arrete tout"
stop

endif



CHAPITRE 4

LES TABLEAUX

Un tableau est un ensemble ordonné d’éléments de méme type représentés par un identifica-
teur unique ; chaque élément étant repéré par un indice. Comme tous les langages, Fortran permet
de manipuler des tableaux. Mais Fortran 90 introduit de nombreuses facilités, fort puissantes et ab-
sentes de la plupart des autres langages : opérations globales, manipulation de portion de tableau,
affectation conditionnelle, nombreuses fonctions intrinséques, etc.

Notons que certaines notions liées aux sous—programmes (transmission de tableaux, fonc-
tions & valeurs tableaux, fonctions intrinséques relatives aux tableaux,...) seront abordées dans les
chapitres 6 et 7.

4.1 Quelques définitions utiles

Définition 4.1 (Rang d’un tableau) Le rang d’un tableau est son nombre de dimensions. Un
vecteur est de rang 1, une matrice de rang 2, etc... Un scalaire est considéré comme de rang 0. En
Fortran 90, un tableau peut avoir jusqu’a 7 dimensions au mazimum.

Définition 4.2 (Etendue d’un tableau) Dans chaque dimension, un tableau a une étendue,
qui est le nombre de composantes du tableau dans cette dimension.

Définition 4.3 (Profil d’un tableau) Le profil d’un tableau est la suite des étendues de ce
tableau selon ses dimensions successives sous forme d’un vecteur d’entiers (soit 1 entier pour
un vecteur, 2 pour une matrice, etc.).

Le produit des étendues représente la taille du tableau, i.e. son nombre d’éléments.

Définition 4.4 (Tableaux conformants) Deuz tableauz sont dits conformants s’ils ont le mé-
me profil. Par convention un scalaire est conformant avec tout tableau.

4.2 Déclaration, initialisation

Pour déclarer un tableau, il suffit de préciser 'attribut dimension (aprés le type) lors de sa
déclaration. Voici quelques déclarations de tableaux.

integer, dimension(5) :: idx ! simple vecteur
real(8), dimension(3,4) :r A ! matrice 3 lignes 4 colonnes
real, dimension(-1:10,0:10) :: C ! matrices 12 lignes 11 colonnes
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Comme on le constate, lorsque que la valeur initiale des indices n’existe pas, elle est prise
par défaut égale & 1. Ainsi, la déclaration
integer, dimension(5) :: v
est équivalente &
integer, dimension(1:5) :: v

On peut maintenant tester les définitions vues plus haut & partir des déclarations suivantes.

real, dimension(-5:4,0:2) :: x
real, dimension(0:9,-1:1) =:: y
real, dimension(2,3,0:5) iz

Les tableaux x et y sont de rang 2, tandis que z est de rang 3. L’étendue des tableaux x et y est
10 dans la premiére dimension et 3 dans la deuxiéme. Ils ont le méme profil : le vecteur (10 3). Ils
sont donc conformants. Leur taille est égale & 30. Le profil du tableau z est le vecteur (2 3 6). Sa
taille est égale & 36.

Définition 4.5 (Constructeur de tableau) Un constructeur de tableau est une liste de sca-
laires (de méme type!) dont les valeurs sont encadrées par les caractéres (/ et /).

La liste peut étre explicite comme

(/3, 5, 1, 8, 12/)

ou comportée une boucle implicite comme

(/ (3xi+1, i=1,3) /) ! liste (/ 4,7,10 /)

Pour le compteur, on utilise la méme régle que dans la boucle do, i.e.
(/ (expression, compteur=debut, fin [,pas]) /)

Par exemple

(/ (3*i+1, i=1,6,2) /)

représente une liste de 3 entiers : (/ 4,10,16 /).

Remarque 4.1 La syntaze bizarre (/ ... /) est utilisée pour éviter tout conflit avec les nombres
complexes. En effet le nombre complere c=(0,1) n’est différent de la liste c=(/ 0,1 /) que par la
présence des barres obliques.

Gréace au constructeur, on peut initialiser un tableau au moment de sa déclaration ou lors
d’une instruction d’affectation. Toutefois, ceci n’est possible que pour les tableaux de rang 1. Pour
les tableaux de rang supérieur & 1, on utilisera la fonction reshape détaillée plus loin.

Voici quelques exemples d’initialisation.

integer i i

integer, dimension(b) :: idx=(/ 2,6,11,8,2 /)
real, dimension(0:90) :: x=(/ (2%i-3, i=0,90) /)
integer, dimension(10):: kx

compteur

a la declaration

notez que i a ete declare
declaration simple

kx=(/ (2%i+1,i=1,10) /) ! dans une affectation
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Si un compteur est utilisé dans le constructeur, il doit absolument avoir été déclaré avant utilisation.
Grace au constructeur de tableau, on peut déclarer des tableaux constants, i.e. en parameter.
En voici un exemple :

integer, dimension(4), parameter :: idx=(/ 2,3,1,2 /)

Pour utiliser un constructeur avec un tableau de dimension supérieure & 1, on utilise la
fonction reshape dont la forme simple est :

reshape (source, shape)

avec

source un tableau de rang 1 de type quelconque. Le tableau source contient la liste
d’éléments qui serviront dans I'initialisation.

shape un tableau d’entiers non négatifs de rang 1. Le tableau shape contient le profil de

la matrice & remplir.
Considérons les déclarations suivantes :
integer, dimension(6) 11 didx=(/ (i,i=1,6) /) ! liste constante
integer, dimension(3,2) :: v=reshape(idx,(/ 3,2 /)) ! initialisation de v
L’instruction d’initialisation
v=reshape(idx, (/ 3,2 /))
est équivalente 3

v(1,1)=idx(1)
v(2,1)=idx(2)
v(3,1)=1idx(3)
v(1,2)=idx(4)
v(2,2)=idx(5)
v(3,2)=1dx(6)

L’ordre de remplissage de v parait bizarre, & premiére vue. Cela vient du Fortran historique. En
effet, en Fortran, les matrices sont stockées par colonne de sorte qu’en mémoire une matrice est
un vecteur constitué de colonnes de la matrice mises bout a bout. Le remplissage se fait donc par
colonne!

On verra, dans la partie opérations globales sur les tableaux, une autre forme d’initialisation
(par un scalaire).

4.3 Opérations globales sur les tableaux

On peut affecter une valeur & tous les éléments d’un tableau, puisqu’un scalaire est confor-
mant avec tout tableau. Par exemple, soit la déclaration

real, dimension(10) :: u
L’instruction d’affectation globale suivante
u=0.0

consiste en affectation de la valeur (scalaire) 0 & tous les éléments du tableau u. Elle est donc
équivalente & la boucle
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do i=1,10
u(i)=0.0
end do

De la méme maniére, avec

integer, dimension(10,25) :: A
Iinstruction

A=1

affecte la valeur 1 aux 250 éléments du tableau A.
L’affectation globale d’un scalaire & tous les éléments d’un tableau peut aussi étre utilisée
pour initialiser un tableau lors de sa déclaration. Dans I’exemple suivant

integer, parameter :: dim=100
real, dimension(dim) :: x=0

le tableau x est initialisé & 0 lors de sa déclaration.

En Fortran 90, on peut utiliser les opérateurs + et * directement sur les tableaux (et non
seulement sur leurs éléments). On obtient ce qu’on appelle une ezpression tableau, i.e. une expres-
sion qui fournit comme résultat un tableau.

Soit les déclarations

integer, parameter :: dim=100
real, dimension(dim) :: x,y,z

L’instruction
zZ=x+y
est équivalente &

do i=1,dim
z(1)=x(i)+y (1)
end do

De méme, l'instruction
Z=X*y
est équivalente &

do i=1,dim
z(1)=x(1i)*y(1)
end do

Donc, dans le cas du produit xxy il s’agit d’un produit élément par élément et non d’un produit
scalaire (qu’on obtient grace a la fonction intrinséque dot_product, cf. ch. 7).

On a vu qu’un scalaire était conformant avec tout tableau. Donc dans une expression tableau,
on peut avoir des scalaires comme opérandes. Ainsi U'instruction

z=x+y+3.14159

est équivalente &
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do i=1,dim
z(i)=x(i)+y(i)+3.14159
end do

Bien stir, comme on pouvait s’en douter, toutes ces opérations ne sont possibles que si les
tableaux opérandes ont le méme profil, i.e. le méme nombre d’éléments dans chaque dimension. Il
n’est pas nécessaire que les indices aient les mémes limites. Par exemples, avec les déclarations

real, dimension(-5:5) X ! profil (/ 11 /)
real, dimension(11) it y,z ! profil (/ 11 /)
real, dimension(5:16) u ! profil (/ 11 /)

on peut écrire

X=z
zZ=y+u

La notion de profil devient encore plus importante lorsqu’il s’agit de tableaux & plusieurs dimen-
sions. Soit les déclarations

real, dimension(10,20) i a ! profil (/ 10,20 /)
real, dimension(-2:7,10:29) :: b ! profil (/ 10,20 /)
real, dimension(10, 0:19) e ! profil (/ 10,20 /)

Alors 'instruction
c=atb
est équivalente 3

do i=1,10
do j=1,20
c(i,j-1)=a(i,j)+b(i-3,j+9)
end do
end do

Remarque 4.2 La valeur d’une expression tableau est entiérement évaluée avant d’étre affectée.
Ce qui nous permet d’écrire

X=2%X ! multiplie tous les elements de x par 2
x=x+1 ! augmente de 1 la valeur des elements de x

Remarque 4.3 Dans les expressions de la forme

Z=x+y
c=a+b

il n’apparait pas d’emblée que ce sont des tableauz. Pour augmenter la lisibilité du code, on peut
écrire

z()=x()+y(:)

c(:,:)=a(:,:)+b(:,:)
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4.4 Section de tableau, vecteur d’indices

En pratique, avec les tableaux statiques, il y a une différence entre la taille physique d’un
tableau (fixée lors de la déclaration) et la taille effective (i.e. celle qui est spécifiée dans les boucles).
Donc si on veut initialiser seulement la partie effective d’un tableau ou effectuer les opérations
précédentes sur des portions de tableaux, on ne peut plus utiliser les facilités des opérations globales.
En Fortran 90 il est possible de faire référence & une partie d’'un tableau appelée section tableau
(ou sous—tableau). Une section tableau est elle-méme un tableau (avec un rang et un profil). La
section est dite réguliere si les indices (du tableau d’origine) ayant servi a la créer forment une
progression arithmétique. Dans le cas contraire on parle de section irréguliére.

4.4.1 Section réguliére
On définit une section réguliére de la fagon suivante

var_tableau([debut]: [fin] [:pas])

avec debut, fin et pas des expressions entieres quelconques. Lorsqu’une de ces expressions est
omise, c’est sa valeur par défaut qui est prise en compte. Les valeurs par défaut sont :

— la valeur du premier indice du tableau pour debut,

— la valeur du dernier indice du tableau pour fin,

— 1 pour pas.

Soit le tableau déclaré ci—aprés

real, dimension(100) :: u
Voici quelques sections tableau de u

u(:) ! tout le tableau u

u(:50) ! les 50 premiers elements de u

u(b1:) ! les 50 derniers elements de u

u(10:20) ! les elements u(i), 10<=i<=20

u(1:100:2) ! tous les elements d’indices impairs de u

Avec les déclarations suivantes

real, dimension(10) :: x
real, dimension(5) :: y

on peut écrire
y=x(1:5) ! on affecte a y les 5 premiers elements de x

Une section réguliére peut apparaitre & gauche d’une instruction d’affectation. On peut donc
écrire

x(1:5)=1 ! on initialise a 1 les 5 premiers elements de x
Voici d’autres affectations correctes

y(:)=x(1:5)*x(6:10)+1
y(1:4)=.5%(x(2:5)-x(7:10))

Comme on ’a déja signalé, une expression tableau est entiérement évaluée avant d’étre
affectée. Ainsi on peut écrire (avec le tableau x précédent)
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x(2:9)=(x(1:8)+x(3:10))/2

On remplace chaque composante de x, exceptés les deux extrémes, par la valeur moyenne des deux
composantes voisines. Sans utiliser de section tableau, il ne faudrait surtout pas écrire

do i=2,9
x(1)=(x(G-1)+x(i+1))/2
end do

car le résultat sera fort éloigné de celui escompté.

Remarque 4.4 Une section réguliére est en réalité une pseudo-boucle do. Ainsi dans l’instruction
x(1:n)=0

il ne se passera rien si n < 1, comme dans une boucle do.

4.4.2 Vecteur d’indices (section non réguliére)

Lorsque les indices d’une section tableau ne forment pas une progression arithmétique, on
peut les regrouper dans un vecteur d’entiers. Soit les déclarations

real, dimension(5) :: x
real, dimension(10) :: y

On sait que (/ 1,3,7,10 /) est un vecteur (constant) d’entiers. Alors y((/ 1,3,7,10 /)) est
un tableau de 4 éléments constitué des éléments y(1), y(3), y(7), y(10). On peut donc écrire

y((/ 1,3,7,10 /)) = 0.
x(2:5)=y((/ 1,3,7,10 /))

Ce qui correspond 4

y(1=0.; y(3)=0.; y(7)=0.; y(10)=0.
x(2)=y(1); x(3)=y(3); x(4)=y(7); x(5)=y(10)

En général, pour des raisons évidentes de lisibilité, on préfére utiliser une variable tableau,
avec un contenu pouvant évoluer. Si 'on déclare

integer, dimension(4) :: idx=(/ 1,3,7,10 /)
I’affectation précédente devient

y (idx)=0.
x(2:5)=y(idx)

Les indices peuvent étre répétés dans les vecteurs d’indices comme dans
integer, dimension(4) :: idx=(/ 2,2,7,10/)

Il n’y a aucune ambiguité lorsqu’on veut seulement utiliser la valeur de cette section tableau. Ainsi,
Pinstruction

x(2:5)=y(idx)

correspond &
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x(2)=y(2); x(3)=y(2); x(4)=y(7); x(5)=y(10)
On voit tout de suite qu’on ne peut pas écrire
y(idx)=x(2:5) ! INTERDIT
puisque y(2) recevrait 2 valeurs distinctes.
Remarque 4.5 D’une maniére générale, lorsqu’une section tableau apparait & gauche d’une af-
fectation, elle ne doit pas faire intervenir deuz fois le méme élément. o

4.4.3 Cas des tableaux a plusieurs dimensions

Pour un tableau de rang supérieur & 1, tout ce qu’on vient de voir est valable pour chaque
dimension. Soit les déclarations

real, dimension(5,10) :: a
real, dimension(5,5) :: b

Alors a(1:5,1:5) est un tableau de rang 2 de profil (/ 5,5 /), comme b. On peut donc écrire
b=2*a(1:5,1:5)+1

On peut combiner une section pour certaines dimensions et un indice pour d’autres. La
notation a(2,1:5) représente un tableau de rang 1 de 5 éléments mais a(2:2,1:5) représente un
tableau de rang 2 de profil (/ 1,5 /).

Voici quelques exemples de manipulations de tableaux de rang 2 avec des sections de ta-
bleaux.

Exemple 4.1 (Permuter deux lignes i et j d’une matrice) L’opération se fait sans boucle
mais il nous faut un vecteur de stockage.

integer, parameter :: ndmax=100 ! dimension physique des tab.

integer :: nd ! dimension reelle (effective) des tab.
real, dimension(ndmax) HED 4 ! vecteur de travail

real, dimension(ndmax,ndmax) :: A

x(1:nd)=A(i,1:nd) ! recopie la ligne i dans x
A(i,1:nd)=A(j,1:nd) ! recopie la ligne j dans la ligne i
A(j,1:nd)=x(1:nd) ! recopie x dans la ligne j

Exemple 4.2 (Combinaison linéaire des lignes i et j d’une matrice) On effectue la com-
binaison linéaire de deux lignes i et j d’une matrice et on met le résultat dans la ligne i.

integer, parameter :: ndmax=100 ! dimension physique des tab.

integer :: nd ! dimension reelle (effective) des tab.
real 2 cl,c2 ! coeff. reels de la comb. lineaire
real, dimension(ndmax,ndmax) :: A

A(i,1:nd)=c1*A(i,1:nd)+c2*A(j,1:nd) ! en une ligne seulement!!
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Exemple 4.3 (Créer une matrice par bloc) Soit A; et Ay des matrices carrées d’ordre n. On
veut créer une nouvelle matrice A de la forme

/A 0
A‘(o A2>

ol O est une matrice carrée d’ordre n ne contenant que des 0.

integer, parameter :: nmx =100 ! dim. physique de Al et A2

integer, parameter :: nmx2=2*nmax ! dim. physique de A

integer HES o] ! dim. effective de Al et A2.
integer :: n2 ! dim. effective de A (n2=2%n)

real, dimension(nmx,nmx) :: A1, A2

real, dimension(nmx2,nmx2) :: A

A(1:n2,1:n2) = 0. ! on initialise (juste ce qu’il faut)
A(1:n,1:n) = A1(1:n,1:n) ! bloc Al

A(n+1:n2,n+1:n2) = A2(1:n,1:n) ! bloc A2

4.5 L’instruction where

On a déja vu comment les expressions tableaux simplifient la vie de 'Homo Numericus.
Une autre évolution qui simplifie la vie est que les fonctions mathématiques élémentaires usuelles
ne s’appliquent plus seulement aux scalaires mais aussi aux tableaux et, dans ce cas, retourne un
tableau de méme profil. Par exemple

y(1:n)=sqrt(x(1:n))
est équivalent a

do i=1,n
y(i)=sqrt(x(i))
end do

Alors se pose le probléme du domaine de définition de la fonction /x;. Mais que faire pour sé-
lectionner les bonnes valeurs ? Pour éviter les boucles, il existe un «filtrey» en Fortran 90 : c’est
Iinstruction where qui sélectionne les éléments d’un tableau suivant un test. La forme générale de
I'instruction where est la suivante

where (expression_logique)
bloc_1

elsewhere
bloc_2

end where

Voici un exemple d’utilisation.

real, dimension(10) :: x,y

where (x>0)
y=log(x)

elsewhere
y=1

end where
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Le bout de code ci—dessus est équivalent &

real, dimension(10) :: x,y
integer HE |
do i=1,10

if (x(i)>0) then
y(i)=log(x(i))
else
y(i)=1
endif
end do

Lorsque bloc_2 est absent et bloc_1 se résume en une seule instruction, on peut utiliser la
forme simplifiée

where (expression_logique) instruction
comme dans

where (x>0) y=sqrt(x)

4.6 Tableaux dynamiques

Il arrive fréquemment que l’on ait & manipuler des tableaux dont les étendues ne sont pas
connues lors de ’écriture du programme. Ce qui est le cas lorsque I’étendue d’un tableau varie
d’une exécution & une autre. Parfois le tableau ne sert que pendant une partie de 'exécution du
programme. En Fortran 77, il était nécessaire de «surdimensionner» les tableaux en question.

Un apport intéressant de Fortran 90 est la possibilité de faire de ’allocation dynamique de
mémoire. Pour allouer un tableau dynamiquement, il faut le déclarer avec l'attribut allocatable.
Le rang du tableau doit étre connu. Par exemple pour des tableaux de réels de rang 1 et 2, la
déclaration est donc obligatoirement de la forme

real, dimension(:), allocatable :: vecteur ! vecteur (reel) dynamique
real, dimension(:,:), allocatable :: matrice ! matrice (reelle) dynamique

L’allocation s’effectuera grice a I'instruction allocate 4 laquelle on indiquera le profil désiré. Voici
différentes maniéres d’allouer les tableaux allouables vecteur et matrice ci—dessus.

allocate(vecteur(n)) ! vect. de taille n
allocate(vecteur(nl:n2)) ! vecteur(i), nl<=i<=n2
allocate(matrice(m,n)) ! mat. de taille m*n

allocate(matrice(ml:m2,n1:n2))
allocate(vecteur(n) ,matrice(m,n)) ! allocation simultannee

La fonction intrinséque allocated permet de savoir si un tableau a été déja alloué ou non.
A noter qu’en cas d’échec d’allocation, & cause d’une mémoire insuffisante par exemple, il y a arrét
de ’exécution. Pour éviter ce comportement brutal, un paramétre optionnel stat permet de savoir
si I’allocation a réussie ou echouée. Voici un exemple.

program ALLOC
implicit none
real, dimension(:,:), allocatable :: a ! tableau dynamique
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integer ::m,n ! futur profil du tableau
integer :: aerr ! pour 1l’erreur d’allocation

print *,’Entrer le profil de la matrice (m,n) :’
read *,m,n

if (.not. allocated(a)) then ! a n’est pas encore alloue
allocate(a(m,n),stat=aerr) ! allocation de a : profil (m,n)
! recuperation de l’err dans aerr
if (aerr /= 0) then ! si aerr<>0, 1’alloc a echoue
print *,’’Erreur dans 1l’allocation du tableau a :’’
stop
endif
endif
deallocate(a) ! on libere 1’emplacement de a

end program ALLOC

Exemple 4.4 (Méthode de la puissance) Soit A une matrice réelle d’ordre n. On suppose
que les valeurs propres de A sont ordonnées de la fagon suivante

(A1l > [Aaf > - > A

avec \; de multiplicité 1. Etant donné un vecteur initial ¢°, de norme euclidienne 1, considérons
pour k =1,2,... la méthode itérative suivante, connue sous le nom de méthode de la puissance

’Uk :Aqkfl
k
v
¢ =
| o ||
A= (Aq", %)

On montre que \* tend vers \j, la plus grande valeur propre de A, lorsque & — +o0o. On arréte
les calculs si
|)\k _ )\k—1|

|)\k| <eg,

ol € > 0 est la précision des calculs.
Le programme ci—apprés calcule une valeur approchée de A; pour la matrice de Hilbert H
définie par
1
1] — i +] — 17
Tous les tableaux utilisés sont dynamiques. On utilise les fonctions intrinséques suivantes (voir
chapitre 7 pour les détails)

iji=1,...,n.

dble convertit un entier en réel double
dot_product produit scalaire de deux vecteurs
matmul produit matrice/matrice ou matrice/vecteur avec les contraintes mathéma-

tiques usuelles sur le produit matriciel.
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program HILBERTVP

implicit none
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! Plus grande valeur propre de la matrice de Hilbert

! Methode de la puissance

&" lambda=",E15.8," Err=",E15.8)°’

! nb max d’iterations

! precision du resultat

! matrice de Hilbert

! vect. de travail

! plus grande val. propre

character(len=*), parameter :: fmt=’("Iter=",I4,&
integer, parameter :: TterMax=250
real(8), parameter :: eps=1.d-8

real(8), dimension(:,:), allocatable :: a
real(8), dimension(:), allocatable :: v,q
real(8) :: lambda

real(8) :: lambdal, erreur

integer ::n,i,j,iter

! lecture de la taille de la matrice

print *,’Entrer la taille de la matrice de Hilbert °’

read *,n

! allocation des tableaux a,v,q,aq
allocate(a(n,n))

allocate(v(n))

allocate(q(n))

! remplissage de la matrice de Hilbert
do i=1,n

a(i,:)=(/ (1.40/dble(i+j-1), j=1,n) /)
end do

! initialisation de q tel que |ql=1
q=0; q(1)=1.d0

lambdal=1.d0; erreur=1

iter=0;

do while (erreur>eps .and. iter<IterMax)
iter=iter+1
v=matmul (a,q)
q=v/sqrt (dot_product (v,v))
lambda=dot_product (q,matmul (a,q))
erreur=abs (lambda-lambdal) /abs(lambda)
lambdal=lambda
print fmt,iter,lambda,erreur

enddo

print ’("La plus grande valeur propre est

print ’("Nombre d’’iterations necessaires :

end program HILBERTVP

! utilisation d’une liste

! boucle principale

! v=Aq

! g=v/|v]|

! (Aq,q)

! erreur relative

! affichage

" F15.10)’,lambda
" I4)’,iter

Avec des tableaux statiques, il aurait fallu préciser les sections de tableaux concernés lors
de appel des fonctions intrinséques. Par exemple pour le produit scalaire, il aurait fallu écrire



4.6. TABLEAUX DYNAMIQUES

dot_product(v(1l:n),v(1:n))

Voici quelques exemples d’exécution.

Entrer la taille de la matrice de Hilbert

4

Iter=
Iter=
Tter=
Tter=
Iter=
Iter=

O d WwWN -

6

lambda=
lambda=
lambda=
lambda=
lambda=
lambda=

O O O O O

.14911498E+01
.15000983E+01
.15002128E+01
.15002143E+01
.15002143E+01
0.
La plus grande valeur propre est :

15002143E+01

Nombre d’iterations necessaires :

Entrer la

25

Tter=
Tter=
Iter=
Iter=
Iter=
Iter=
Iter=
Iter=

~NOoO O WN -

8

taille de la matrice de

lambda=
lambda=
lambda=
lambda=
lambda=
lambda=
lambda=
lambda=

O OO O O OO

.18439228E+01
.19431849E+01
.19511112E+01
.19517082E+01
.19517529E+01
.19517562E+01
.19517565E+01
0.
La plus grande valeur propre est :

19517565E+01

Nombre d’iterations necessaires :

Entrer la taille de la matrice de

1000

Iter=
Iter=
Iter=
Iter=
Iter=
Iter=
Iter=
Tter=
Tter=
Iter=
Iter=
Iter=
Tter=
Tter=
Iter=

O© 00 ~NOU P WN -

10

[
[

12
13
14
15

lambda=
lambda=
lambda=
lambda=
lambda=
lambda=
lambda=
lambda=
lambda=
lambda=
lambda=
lambda=
lambda=
lambda=
lambda=

.19917362E+01
.23071073E+01
.24056663E+01
.24332490E+01
.24405716E+01
.24424821E+01
.24429781E+01
.24431066E+01
.24431400E+01
.24431486E+01
.24431508E+01
.24431514E+01
.24431516E+01
.24431516E+01
.24431516E+01
La plus grande valeur propre est :

Nombre d’iterations necessaires :

Err= 0.32937658E+00
Err= 0.59652573E-02
Err= 0.76327551E-04
Err= 0.97031100E-06
Err= 0.12333994E-07
Err= 0.15678210E-09

1.5002142801

6
Hilbert
Err= 0.45767793E+00
Err= 0.51082167E-01
Err= 0.40624852E-02
Err= 0.30586424E-03
Err= 0.22916229E-04
Err= 0.17162877E-05
Err= 0.12853585E-06
Err= 0.96262572E-08

1.9517565153

8
Hilbert
Err= 0.49792548E+00
Err= 0.13669546E+00
Err= 0.40969537E-01
Err= 0.11335741E-01
Err= 0.30003547E-02
Err= 0.78220227E-03
Err= 0.20301830E-03
Err= 0.52628135E-04
Err= 0.13638216E-04
Err= 0.35339411E-05
Err= 0.91569552E-06
Err= 0.23726861E-06
Err= 0.61479285E-07
Err= 0.15930047E-07
Err= 0.41276765E-08

2.4431516130

15
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4.7 Entrées/Sorties de tableaux

Une instruction d’entrée—sortie peut contenir n’importe qu’elle forme de tableau (éléments,
sous—tableau, tableau). Soit les déclarations

integer, dimension(5) :: m
real, dimension(5,5) :: x

On peut seulement faire apparaitre les éléments, comme dans

read *, m(1), m(2)
print *, x(1,2), x(1,3), x(1,5)

On peut aussi utiliser le nom du tableau ou des expressions tableaux, comme dans

read *, m ! equivalent a read *, m(1),m(2),m(3),m(4),m(5)
print *, x+1 ! equivalent a print *,x(1,1)+1,x(2,1)+1,x(3,1)+1,...

Dans ce cas chaque nom de tableau représente la liste de tous ses éléments. Pour un tableau de
rang 1, l'ordre est naturel. Pour les tableaux de rang supérieur & 1, Pordre de la liste est celui
d’arrangement des éléments en mémoire, c’est—a—dire colonne par colonne.

On peut aussi utiliser une section de tableau. Ainsi les instructions

read *, m((/1,4,2/))
print *, x(1:3,2)

sont équivalentes &

read *, m(1), m(4), m(2)
print *, x(1,2), x(2,2), x(3,2)

Toutefois, dans le cas d’une lecture, il faut éviter que, dans une méme section, le méme
élément ne soit cité deux fois. Ainsi

read *, m((/2,4,2/))
est incorrect puis qu’équivalent
read *, m(2),m(4),m(2)
Une alternative aux sections tableau est 'utilisation de listes implicites comme dans
read *, (m(i),i=1,4)

Pour obtenir l’affichage d’un tableau de rang 2 suivant I'ordre naturel, on combine liste
implicite et boucle

do i=1,5
print *, (x(i,3), j=1,5)
end do

Exemple 4.5 (Affichage de la matrice de Hilbert) Voici un programme qui affiche la ma-
trice de Hilbert dans le format usuel, i.e. ligne par ligne.
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program HILBERTMAT
implicit none
character(len=10), parameter
integer, parameter
real(8), dimension(nmax,nmax)
integer
integer

:: fmt=’(8F15.8)’
:: nmax=10
:: h
i:n

i, j

print *,’Entrer la taille de la matrice ’

read *,n

! remplissage de la matrice de Hilbert

do i=1,n
do j=1,n
h(i,j)=1.d0/dble(i+j-1)
end do
end do
! affichage
print ’(//"Matrice de Hilbert d’’ordre :
do i=1,n
print fmt,(h(i,j),j=1,n)
end do
end program HILBERTMAT
Voici quelques résultats d’exécution.
Entrer la taille de la matrice
3
Matrice de Hilbert d’ordre : 3
1.00000000 0.50000000 0.33333333
0.50000000 0.33333333 0.25000000
0.33333333 0.25000000 0.20000000
Entrer la taille de la matrice
5
Matrice de Hilbert d’ordre : 5
1.00000000 0.50000000 0.33333333
0.50000000 0.33333333 0.25000000
0.33333333 0.25000000 0.20000000
0.25000000 0.20000000 0.16666667
0.20000000 0.16666667 0.14285714

",I3/)’,n

0.25000000
0.20000000
0.16666667
0.14285714
0.12500000

taille max
matrice de Hilbert
taille reelle

ol eNeoNeoNe

constante format

.20000000
. 16666667
.14285714
.12500000
JA1111111
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On décide de remplacer la déclaration de la constante de format par
character(len=10), parameter :: fmt=’(8E15.8)’ ! constante format
On obtient comme affichage :

Entrer la taille de la matrice
4

Matrice de Hilber d’ordre : 4

0.10000000E+01 0.50000000E+00 0.33333333E+00 0.25000000E+00
0.50000000E+00 0.33333333E+00 0.25000000E+00 0.20000000E+00
0.33333333E+00 0.25000000E+00 0.20000000E+00 0.16666667E+00
0.25000000E+00 0.20000000E+00 0.16666667E+00 0.14285714E+00



CHAPITRE 5

TYPES DERIVES (STRUCTURES),
POINTEURS

En Fortran 77, les seuls types non scalaires sont les tableaux. L’utilisateur ne peut donc pas
définir ses propres types de données comme dans la plupart des autres langages. Quant aux notions
de pointeurs et de gestion dynamique de la mémoire... ce sont des astres inaccessibles depuis la
planéte Fortran 77. En Fortran 90, tout devient possible.

5.1 Structures ou types dérivés

On a déja vu, avec les tableaux, comment on pouvait désigner sous un seul nom un ensemble
de valeurs de méme type, chacune d’entre elles étant repérée par un indice. Parfois, il est plus
avantageux de désigner sous un seul nom un ensemble de valeur pouvant étre de types différents. A
titre d’exemple, en Mécanique (des fluides ou des solides) la résolution numérique d’un probléme
par éléments finis se fait sur un maillage composé de triangles ou de quadrilatéres, eux—mémes
composés d’arétes et de points. Avec les tableaux il en faut 3 (triangles, arétes, sommets) pour
représenter un maillage. Et ces trois tableaux sont a transborder d’une unité de compilation & une
autre, avec leurs dimensions physiques et effectives respectives. En C++, on peut tout représenter
en un seul objet.

Voici un exemple de code permettant de déclarer un nouveau type de structure nommé
point qui représente un point du plan.

type point
real :: X,y
end type point

On peut alors déclarer une ou plusieurs variables du nouveau type comme suit
type (point) :: a,b,c ! 3 points du plan

On peut méme déclarer des tableaux d’objets du type point comme dans
type (point), dimension(20) :: coord ! tableau de 20 points

La désignation d’un champ de la structure se note en faisant suivre le nom de la variable
du symbole % suivi du nom du champ. L’affectation globale entre objets de méme type ainsi que
I'impression globale sont prédéfinies! Voici quelques exemples :
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a%x=2.5 !
print *,biy !
coord(5)=a !
1

print *,a

CHAPITRE 5. TYPES DERIVES (STRUCTURES), POINTEURS

affecte la valeur 2.5 au champ x de a

imprime le champ y de b

affectation globale <=> coord(5)%x=alx, coord(5)%y=alky
impression globale <=> print *,alx,a%y

Pas la peine d’écrire un constructeur! Il est prédéfini comme pour les tableaux. Par exemple

point(2.5,0)

représente une structure de type point dans laquelle le premier champ (i.e. x) vaut 2.5 et le
deuxiéme champ (i.e. y) vaut 0. Un tel constructeur peut apparaitre dans une initialisation comme

dans

type (point) :: Origin=point(0.0,0.0)

ou dans une affectation, comme dans

h=0.1
do i=1,20

coord(i)=point (i,h*i)

end do

Un type dérivé peut avoir comme champ un autre type dérivé. Voici quelques types dérivés

du type point

type cercle

type (point) :: centre
real :: rayon

end type cercle

type triangle

type (point) :: a,b,c

end type triangle

Remarque 5.1 Les attributs parameter, allocatable et target sont interdits dans un champ.

<&

5.2 Pointeurs

Si en C/C++ un pointeur est une variable ayant une adresse pour valeur, en Fortran 90 un
pointeur n’est en fait qu'un alias pour des raisons d’efficacité. Les pointeurs sont typés en Fortran
90 : un pointeur vers un scalaire de type real ne pourra étre associé qu’a des scalaires de type
real et rien d’autre. De plus toute variable susceptible d’étre cible d’un pointeur doit étre déclarée
comme cible potentielle grace a l'attribut target. Bref en Fortran 90, les pointeurs sont moins
flexibles qu’en C/C++ mais beaucoup plus optimisés.
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5.2.1 Déclaration

Un pointeur est une variable déclarée avec I’attribut pointer. Son type (et donc son sous—
type) et son rang sont fixés une fois pour toutes a la déclaration :

real, pointer i pr ! pointeur -> reel
real, dimension(:,:), pointeur :: pa ! pointeur -> tab. rang 2

Par définition, pr ne peut étre associé qu’a un scalaire réel du sous—type par défaut et pa ne peut
étre associé qu’a un tableau de réels du sous—type par défaut, de rang 2.

Les variables susceptibles d’étre cibles d’un pointeur doivent étre déclarées comme telle
grace a lattribut target. Pour nos pointeurs pr et pa, déja déclarés, il nous faut donc des cibles
potentielles réels et tableaux de réels de rang 2 :

real, target x,y ! cible d’1 pointeur -> reel
real, dimension(5,3), target :: a,b ! cible d’1 pointeur -> tab. rang 2
real, dimension(10,10), target :: c ! cible d’1 pointeur -> tab. rang 2

5.2.2 Affectation d’adresse, de valeur

Un pointeur peut se voir attribuer une (nouvelle) valeur d’adresse par le symbole d’associa-
tion => grace a lopération (binaire)

lhs => rhs
L’opérande de gauche 1hs doit toujours étre un pointeur, tandis que celui de droite rhs peut étre

soit un pointeur, soit une variable cible.
Avec les pointeurs et cibles déja déclarés au 5.2.1, considérons les associations :

pr => ¥y ! association de pr et de la cible y
=>b

pa ! association de pa et de la cible a

Dés lors pr et y, et pa et b peuvent étre utilisés indifféremment puisque faisant référence a la méme
entité. Si la valeur de y change, celle de pr change aussi. Méme chose pour b et pa.
Si pr2 est un autre pointeur sur un scalaire réel, alors

pr2 => pr ! meme chose que pr =>y

fait de pr2 un pointeur vers y. La variable y posséde maintenant 2 alias.
Considérons le bout de code suivant :

x=3.14159
pr =y ! association pr et y
pr=x ! equivalent (en valeur) a y=x

La derniére instruction change la valeur de la cible de pr, i.e y, qui devient celle de x. Si la valeur
de x change, celle de pr et y ne changera pas car pr n’est pas associé i x. Mais

pr = 3.0 ! equivalent a y=3.0

changera a nouveau la valeur de y.

Pour un pointeur tableau, I’association peut se faire avec un tableau tout entier ou avec une
section réguliére de rang cohérent avec celui du pointeur. Un pointeur tableau ne peut étre associé
avec une section non réguliére (vecteur d’indices) d’un tableau.

Avec les mémes déclarations qu’au 5.2.1, 'instruction
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pa => a(3:5,1:2)

associe pa 3 la section spécifiée du tableau a. Dés lors pa(1,1) rrprésente a(3,1), pa(2,2) repré-
sente a(3,2), etc. La fonction size(pa) donne 6 et shape(pa) retourne (/ 3,2 /). L’affectation

pa =0
est alors équivalente &

a(3:5,1:2)=0

5.2.3 Gestion dynamique

La cible d’un pointeur peut étre créée par allocation dynamique de mémoire. Comme on sait
déja le faire pour les tableaux dynamiques, ’'instruction allocate résérve de la place mémoire et
I’associe & un pointeur. La syntaxe est la méme que pour les tableaux dynamiques. Les instructions

allocate(pr,stat=ierri)
allocate(pa(nmx,md) ,stat=ierr2)

allouent de ’espace mémoire, la premiére pour un scalaire réel et la seconde pour un tableau de
rang 2. Ces objets (i.e. les deux zones mémoire ainsi réservées) sont automatiquement associés aux
pointeurs pr et pa respectivement.

Comme pour les tableaux dynamiques, deallocate permet de libérer 'emplacement lors-
qu’on en a plus besoin. La fonction associated permet de connaitre & tout moment le statut
d’association d’un pointeur :

associated(pa) ! .true. si pa est associe a quelque chose
associated(pa,b) ! .true. si pa est associe a b

Si le pointeur est défini mais non associé, la fonction retourne .false. Si le pointeur est indéfini,
le résultat de la fonction associated l'est aussi. Pour éviter les pointeurs indéfinis, on utilise
I’instruction nullify. Par exemple

nullify(pr)
nullify(pa)

permet d’initialiser «proprement» les pointeurs pr et pr.

5.3 Pointeurs vs. tableaux dynamiques

L’utilité des pointeurs n’est pas toujours évidente en Fortran 90 tant les tableaux dynamiques
semblent «faire ’affaire» pour ce qui est de la gestion de la mémoire.

Voici deux programmes TABPOINT1 et TABPOINT2, qui se contentent de faire ’affectation
globale entre deux tableaux. L’un utilise 2 tableaux statiques tandis que I’autre utilise 2 pointeurs
de tableaux.

program TABPOINT1
!

! affectation globale de deux tableaux
! methode 1 : tableaux statiques
!

integer, parameter :: nmx=1000, IterMax=1000
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real, dimension(nmx,nmx) :: a,b
integer 11 iter
a=0; b=0
do i=1,IterMax

a=b
end do

end program TABPOINT1

program TABPOINT2
!
! affectation globale de deux tableaux
! methode 2 : pointeurs tableaux
1
integer, parameter :: nmx=1000, IterMax=1000
real, dimension(:,:), pointer :: prl,pr2,pr
real, dimension(nmx,nmx),target :: a,b
integer 11 iter

a=0; b=0
prl => a
pr2 => b
do i=1,IterMax
pr => pr2
pr2 => pri
end do
end program TABPOINT2

Et voici maintenant les statistiques d’exécution des deux programmes (sur SGI Octane 2).

Statistiques d’exécution du programme TABPOINT1 :

Summary of statistical callstack sampling data (usertime)--
4699: Total Samples
0: Samples with incomplete traceback
140.970: Accumulated Time (secs.)
30.0: Sample interval (msecs.)

excl.secs excl.)% cum.} incl.secs incl.% samples procedure (dso: file, line)
[1] 140.970 100.0% 100.0% 140.970 100.0Y% 4699 tabpointl (exel: ctpl.f90, 1)
[2] 0.000 0.0% 100.0% 140.970 100.0% 4699 __start (exel: crtiltext.s,103)
[3] 0.000 0.0% 100.0% 140.970 100.0% 4699 main (libftn.so: main.c, 76)

Statistiques d’exécution du programme TABPOINT2 :

Summary of statistical callstack sampling data (usertime)--
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7: Total Samples

0: Samples with incomplete traceback
0.210: Accumulated Time (secs.)
30.0: Sample interval (msecs.)

excl.secs excl.) cum.} incl.secs incl.% samples procedure (dso: file, line)
[1] 0.210 100.0% 100.0% 0.210 100.0% 7 tabpoint2 (exe2: ctp2.f90, 1)
[2] 0.000 0.0% 100.0% 0.210 100.0% 7 __start (exe2: crtltext.s,103)
[3] 0.000 0.0% 100.0% 0.210 100.0% 7 main (libftn.so: main.c, 76)

En conclusion le programme avec tableaux a duré 140s environ, tandis que celui avec les
pointeurs n’a méme pas mis 1s. Que s’est—il passé? C’est simple, le programme avec tableaux
change le contenu des tableaux, tandis que celui avec les pointeurs se contente de changer ... les
noms des tableaux. Comme la taille des tableaux est de 1000000 et qu’il y a 1000 itérations, le
programme TABPOINT1 a effectué 1000 x 106 = 10° affectations tandis que TABPOINT2 n’a effectué
que 1000 affectations.

La morale de tout ¢a : Dans les méthodes itératives, on a en permanence les deux solutions
approchées les plus récentes (cf. exemple 3.2). Il y a donc & chaque fin d’itération échange de valeurs
entre les deux variables correspondantes. Dans le cas ou les variables en question sont des tableaux
de grande taille, les exemples ci—dessus montrent que 1'utilisation de pointeurs tableaux peut faire
économiser un temps considérable.



CHAPITRE 6

PROCEDURES ET FONCTIONS

Un code Fortran digne de ce nom est en général constitué d’un programme principal et de
plusieurs sous—programmes, la plupart du temps dans des fichiers séparés. En Fortran 77, chaque
sous—programme est une unité de compilation distincte. Elle est compilée comme un tout, indé-
pendamment de toutes les autres et du programme principal susceptible de I'utiliser. La visibilité,
entre unités de compilation, est donc trés réduite et le controle de cohérence des arguments trés
limité. On parle alors d’interface implicite. C’est I'interface par défaut du Fortran 90. Fortran 90
introduit la notion d’interface explicite qui augmente la visibilité entre unités de compilation. En
outre la vocation des arguments peut étre précisée. D’ot un meilleur controle, par le compilateur,
de la cohérence des arguments.

On distingue deux types de sous—programmes en Fortran : les fonctions ou sous—programmes
«expressiony et les procédures ou sous—programmes «instructions». Les fonctions intrinséques (ou
prédéfinies) seront étudiées au chapitre suivant. A ces notions classiques s’ajoute, en Fortran 90,
la notion de module qui permet de fiabiliser la communication entre unités de compilation. On
nommera unité de programme un module, un sous—programme externe ou le programme principal.

6.1 Les procédures

6.1.1 Procédure externe (interface implicite)

On commence par étudier les procédures externes simples (i.e. sans interface), héritage de
Fortran 77. C’est le cas qui conduit le plus souvent & des erreurs non détectées & la compilation.
Mais c’est sous cette forme qu’existe la plupart des sous—programmes des bibliothéques (héritage
oblige). Voici un exemple de procédure (calcul des racines réelles d’un trindme) :

subroutine trinome(a,b,c,x1,x2)

implicit none ! tres important

real, intent(in) :: a,b,c ! arguments donnees (coefficients)

real, intent(out) :: x1,x2 ! arguments resultats (racines eventuelles)
real :: delta ! discriminant (variable locale)

delta=b*b-4.0%ax*c;

if (delta<0) then
print *,"Delta<0 : Pas de racines reelles"
x1=0; x2=0
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else
x1=-.5%(b-sqrt(delta))/a; x2=-.5*%(b+sqrt(delta))/a
endif
end subroutine trinome

Comme on le voit, la structure d’une procédure est assez voisine de celle du programme principal :
en-téte (commengant par le mot clé subroutine), déclarations, instructions exécutables et l'ins-
truction end. L’en—téte de la subroutine contient simplement la liste des arguments sans leurs
types. Ces arguments sont appelés arguments formels (ou paramétres formels ou muets) par oppo-
sition & ceux utilisés lors de ’appel de la procédure appelés arguments effectifs. Les déclarations des
arguments se font 3 l'intérieur de la procédure. L’attribut (optionnel) intent permet de préciser la
vocation des arguments pour des vérifications supplémentaires lors de la compilation. En Fortran
90, on peut distinguer 3 types d’arguments :

intent (in) argument donnée. Sa valeur ne doit pas étre modifiée dans la procédure.
L’argument se comporte comme une constante locale & la procédure. A
I’appel, 'argument effectif peut étre une variable existante, une constante
littérale, une expression,...

intent (out) argument résultat. La procédure ne doit pas utiliser sa valeur mais seule-
ment lui en fournir une. C’est I’exécution de la procédure qui fixe I’état de
Pargument qui est initialement indéterminé. A Iappel, 'argument effectif
doit toujours étre une variable existante (allouée ou non).

intent (inout) argument donnée et résultat. La procédure peut utiliser sa valeur mais doit
aussi lui en fournir une. A Pappel, ’argument effectif doit toujours étre une
variable existante (allouée ou non).

La vocation d’un argument ne doit pas étre confondue avec la maniére dont l'information corres-
pondante est réellement transmise (par adresse ou par valeur). En Fortran 90 c’est le compilateur
qui est libre de choisir le mode de transmission approprié.

Pour ’appel, on utilise le mot clé call comme dans ’exemple ci—dessous.

program racine

implicit none ! ne pas oublier
real :: a,b,c ! coef. du trinome
real :: x1,x2 ! solutions eventuelles

print *,’Entrer les coef. a, b, c du trinome :’

read *, a, b, c ! lecture a,b,c
call trinome(a,b,c,x1,x2) ! appel a la procedure trinome
print *,’Les racines sont : ’,x1,x2 ! affichage solutions x1,x2

end program racine

Comme signalé plus haut, la procédure trinome n’est visible du programme principal qu’a
travers son en—téte. Il n’y a donc aucun contréle de cohérence des arguments lors de la compilation.
Voici quelques exemples d’appels (corrects ou non) qui «passenty» a la compilation

call trinome(1,0,-4,x1,x2) ! correct a,b,c const. dans la procedure
call trinome(1,0,a*a,x1,x2) ! correct var avec attribut intent(in)
call trinome(a,b,c,1.5,x1) ! argument constante numerique --> DANGER
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call trinome(a,b,c,i,j) ! pas correct si i,j de type integer
call trinome(a,c,x1,x2) ! pas correct oubli de b

Remarque 6.1 Le mode de transmission par défaut n’est pas intent(inout) car dans ce cas
Vargument effectif doit toujours étre définissable. Ce qui n’est pas obligatoirement nécessaire avec
le mode par défaut (I’argument pouvant méme étre une constante).

Remarque 6.2 On peut, comme en Fortran 77, ne pas préciser la vocation des arguments. Dans
ce cas le compilateur ne fera aucun contréle sur lutilisation des arguments dans la procédure.

Remarque 6.3 Un argument effectif doit avoir l’exact sous—type de ’argument formel auquel il
correspond sauf pour les chaines dont les longueurs peuvent varier.

6.1.2 Procédure interne (interface explicite)

Sans atteindre la totale liberté d’emboitement des langages & structure, Fortran 90 permet la
définition de procédure & l'intérieur du programme principal ou de procédures externes. Toutefois,
le niveau d’emboitement est limité & 1 : une procédure interne ne peut en contenir & son tour.
Une procédure interne n’est accessible qu’a son hote. Voici comment se présenterait le programme

racine du 6.1.1 si nous avions fait de trinome une procédure interne.

program racine

implicit none ! instruction globale
real :: al,bl,cl ! variables globales
real :: yl,y2 ! variables globales

print *,’Entrer les coef. a, b, c du trinome :’

read *, al,bl,cl ! lecture coef.
call trinome(al,bl,cl,yl,y2) ! appel a trinome
print *,’Les racines sont : ’,yl,y2 ! affichage solutions

!'-—- Fin partie executive de racine ----———————-—

contains ! mot cle indiquant la presence
! de sous-prog. internes

subroutine trinome(a,b,c,x1,x2)

real, intent(in) :: a,b,c ! arguments donnees (coefficients)
real, intent(out) :: x1,x2 ! arguments resultats (racines eventuelles)
real :: delta ! discriminant (variable locale)

delta=b*b-4.0*ax*c;

if (delta<0) then
print *,"Delta<0 : Pas de racines reelles"
x1=0; x2=0

else
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x1=-.6x(b-sqrt(delta))/a; x2=-.5*%(b+sqrt(delta))/a
endif
end subroutine trinome

end program racine ! Fin de racine

La définition de la procédure trinome est la méme qu’au 6.1.1 mais elle est placée entre le
mot clé contains et la fin du programme racine. Le mot clé contains précise que le programme
racine contient des procédures internes dont la définition vient & la suite. La procédure interne
a accés & toutes les variables définies par son hote qui deviennent de facto des variables globales
avec toutes les (facheuses) conséquences qui peuvent survenir. D’ou le changement de noms des
variables de racine pour bien distinguer (3 la lecture) variables locales et globales.

La procédure interne étant un cas d’interface explicite, la visibilité entre appelant et appelé
est maximale. D’ot un meilleur controle de la cohérence des arguments lors de la compilation. Des
appels incohérents tels que

call trinome(a,b,c,1.5,x1) ! argument constante numerique --> DANGER
call trinome(a,b,c,i,j) ! pas correct si i,j de type integer
call trinome(a,c,x1,x2) ! pas correct oubli de b

ne «passeraienty» plus a la compilation.

Si linterface explicite par procédure (ou fonction) interne est simple et permet de résoudre
a la compilation tous les cas d’erreurs de cohérence d’arguments, elle présente deux inconvénients
majeurs qui limitent son utilisation :

— la procédure interne n’est pas visible de ’extérieur,

— programmation assez lourde et non modulaire.

6.2 Les fonctions

Il y a deux types de fonctions en Fortran
— les fonctions intrinséques, c’est—a—dire fournies avec le langage (étudiées au chapitre sui-
vant),
— les fonctions définies par 1'utilisateur.
La définition d’une fonction, par 'utilisateur, se fait de maniére assez voisine de celle d’une pro-
cédure. Une fonction pourra étre interne ou externe. Tout ce qui a été dit précédemment sur les
variables locales, les variables globales et les arguments reste valable.

6.2.1 Fonctions externes (interface implicite)

Voici la forme générale d’une fonction externe en Fortran 90.

[type] function nomfct(liste_arguments)
implicit none
[type nomfct]
! declaration arguments

! declaration variable locale

nomfct=... ! valeur de la fonction
end function nomfct
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Le type du résultat de la fonction est précisé soit dans 'en—téte (héritage Fortran 77) soit a
Iintérieur de la fonction. Voici un exemple de fonction externe qui calcule le n—-iéme terme de la
suite (entiére) de Fibonacci u,, = up—1 + up—_2, pour n > 2 avec u; = up = 1.

function fibonac(n)
implicit none
integer, intent(in) :: n ! declaration argument donnee
integer :: fibonac ! declaration resultat

! variable locales
integer :: ul0, ul ! 2 premiers termes de la suite

integer 1 ou2 ! terme courant
integer S |

u0=1; ul=1
do i=2,n
u2=ul+ul;
ul=ul;
ul=u2
end do

fibonac=u2 ! resultat de la fonction fibonac

end function fibonac

Voici un programme qui affiche le n—iéme terme de la suite de Fibonacci.

program FIBO
implicit none
integer :: n ! terme de la suite
integer :: fibonac ! on declare le type de la fonction

print *,"Entrer un entier >=2 "
read *,n

print *,"Le n-ieme terme de la suite de Fibonacci est :",fibonac(n)
end program FIBO

L’exécution du programme FIBO donne :

Entrer un entier >=2
10

Le n-ieme terme de la suite de Fibonacci est : 89

Entrer un entier >=2

25
Le n-ieme terme de la suite de Fibonacci est : 121393

On peut utiliser la fonction fibonac comme n’importe quelle fonction intrinséque, dans une
affectation simple comme
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ii=fibonac(n)
ou dans une expression arithmétique
k=i*fibonac(10)+n*fibonac(n)

Mais il est nécessaire que le compilateur connaisse le type de la fonction fibonac. C’est pour cela
que dans le programme FIB0 on déclare la variable fibonac. En ’absence de cette déclaration, le
compilateur signalera que la variable fibonac n’est pas déclarée (en présence de implicit none,
dans le cas contraire...)

6.2.2 Fonctions internes (interface explicite)

Comme pour les procédures, pour définir une fonction interne, il suffit de la placer entre les
mots—clé contains et end du programme ou du sous—programme hote. A la différence des fonctions
externes, plus besoin de déclarer le type de la fonction dans le programme héte puisque ce dernier
a une visibilité imprenable sur sa fonction interne.

6.3 Variables locales a4 sous—programme

Dans un programme principal, les variables ont leur emplacement mémoire défini une fois
pour toutes : elles sont dites statiques. Les variables locales & un sous—programme sont gérées
différemment. Fortran 90 a prévu

— de ne leur attribuer un emplacement mémoire qu’au moment ot I’on commence & exécuter

le sous—programme

— de libérer ’emplacement correspondant 4 la fin de 'exécution du sous—programme.

On dit que les variables locales sont automatiques. La conséquence immédiate est que par défaut
leur valeur n’est pas conservée d’un appel & un autre. Mais on peut toujours imposer & une variable
locale d’avoir un emplacement permanent et, ainsi, de conserver sa valeur d’un appel au suivant.
1l suffit de la déclarer avec ’attribut save comme dans

subroutine ...
integer, save :: p
real, dimension(10), save :: x

Une autre maniére de rendre une variable locale statique est de l’initialiser. En effet, en
Fortran 90, si on initialise une variable locale, elle devient d’office statique.

Voici en exemple, une procédure qui se contente de comptabiliser le nombre d’appels et de
Iécrire.

subroutine JeMeCompte
implicit none
integer :: nb_appels=0 ! variable locale -> statique

nb_appels=nb_appels+1
print *,’Appel No ’,nb_appels
end subroutine compter
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6.4 Tableaux transmis en argument d’une procédure externe

La procédure externe étant une unité de compilation indépendante, on voit que se pose le
probléme de la fagon dont on va pouvoir connaitre le profil d’un tableau transmis en argument. En
fait on utilise une méthode trés simple (héritée de Fortran 77 comme les procédures externes) : on
transmet en argument le tableau et ses étendues. Cette section est surtout destinée & la compré-
hension des sous—programmes écrits en Fortran 77. Les modes de transmission plus adaptées a la
programmation moderne sont présentés & partir du 6.5.

Les paramétres tableaux les plus simples & passer en argument sont les vecteurs car il suffit de
passer aussi la taille en argument. Toutefois, cette dimension ne devra pas dépasser la dimension
physique (i.e. celle déclarée dans le programme appelant) du parameétre effectif sous peine de
provoquer des catastrophes a ’exécution.

Soit le sous—programme moyenne suivant qui calcule la moyenne de n nombres réels

1 n
S =— E ZTj.
n-
i=1
Les n nombres x;, i = 1,...,n sont naturellement stockés dans le vecteur .

subroutine moyenne(x,n,som)
implicit none

integer HEES ] ! declaration dim.
real, intent(in), dimension(n) :: x ! declaration vect. x
real, intent(out) :: som ! moyenne

! variables locales
integer |

som=0
do i=1,n ! somme sur les elements x(i)
som=som+x (n)
end do
som=som/real (n) ! real convertit l’entier n en reel
end

On peut ne pas préciser la dimension de x lors de sa déclaration dans moyenne en écrivant simple-
ment

real, intent(in), dimension(*) :: x
Mais dans ce cas, 'option de vérification de la taille des tableaux (-C en général) devient inefficace.

Remarque 6.4 1[I existe en Fortran 90 une fonction intrinséque sum qui calcule la somme des
éléments d’un tableau passé en argument. o

Le programme suivant fait appel au sous—programme moyenne pour calculer la moyenne de
n nombres.

program calcul_moyenne
implicit none
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integer, parameter :: nmax=100 ! dim. physique de x
integer i n ! dim. reelle du vect. x
real, dimension(nmax) :: x ! x(1), i=1,..,n

integer HE |

real :: ss

! Lecture des donnees
print *,’Entrer n : ?
read *, n

do i=1,n
print *,’Entrer x(’,i,’)’
read *, x(i)

end do

! Calcul de la moyenne
call moyenne(x,n,ss) ! on ne transmet que l’etendue reelle n

print *, ’La moyenne est ’,ss
end

En réalité, c’est ’adresse du premier élément (& utiliser) qui est transmise au sous-program-
me. La dimension indique alors le nombre d’éléments suivants & utiliser. Le programme appelant
peut donc transmettre seulement un bout de vecteur en jouant sur son premier élément et sa
longueur. Par exemple, si on veut calculer seulement la moyenne des 10 derniéres composantes
d’un vecteur 4 I’aide de la procédure moyenne, on fait simplement

nl=10
call moyenne(x(n-ni+1),n1,ss)

Dans la procédure moyenne, on aura un vecteur & 10 composantes commencant 3 x(n-ni+1), i.e.
les 10 derniers éléments de x.

Pour les arguments tableaux autres que les vecteurs il faut absolument transmettre les
dimensions physiques et effectives. Compte tenu de la maniére dont les éléments d’un tableau sont
rangés en mémoire, pour un tableau de rang m (i.e. m indices), les m — 1 prémiéres dimensions
suffisent.

Soit le programme calculmatrice qui fait calculer le produit de deux matrices A = (a;;)
et B = (b;j); A est une matrice mq X n, et B est une matrice my X np. On sait que la matrice
produit C' = (¢;;) = A - B est une matrice m, x n;, dont les éléments sont donnés par la formule

n
Cij = E Qikbrj -
k=1

Le produit matriciel est effectué par un sous—programme ProduitMat. Ce produit matriciel n’est
possible que si n, = myp. On testera donc les dimensions avant ’appel du sous—programme
ProduitMat.

program matrice
implicit none ! ne jamais oublier
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integer, parameter :: nmax=100 ! dim. physique des tableaux
real, dimension(nmax,nmax) :: A,B,C ! declaration des tableaux
integer :: ma,na ! dim. reelles de A

integer :: mb,nb ! dim. reelles de B

integer HE I

! Lecture des dimensions

print *, ’dimension de A : ma na ’
read *, ma,na

print *, ’dimension de B : mb nb ’
read *, mb,nb

if (na /= mb) then
print *,’Le produit matriciel est impossible’
stop ! on arrete le programme
endif
call ProduitMat (nmax,ma,na,nb,A,B,C)
end

Le sous-programme ProduitMat est alors :

subroutine ProduitMat (dmx,mx,nx,ny,x,y,z)

implicit none ! Ne jamais 1l’oublier

integer :: dmx ! dim. physique des tableaux
integer :: mx,nx,ny ! dim. reelles avec my=nx
real, dimension(dmx,nx) :: x

real, dimension(dmx,ny) :: y,z

! Variables locales
integer :i,j,k

do i=1,mx

do j=1,ny
z(i,3)=0.
do k=1,nx

z(i,j)=z(i,j)+x(G, k) *y(k,j)

end do

end do

end do

end

Voici une autre forme plus compacte pour ProduitMat qui utilise la fonction intrinséque dot_product?
qui effectue le produit scalaire de deux vecteurs passés en argument.

subroutine ProduitMat (dmx,mx,nx,ny,x,y,z)
implicit none ! ne jamais 1l’oublier

ldot_product — produit scalaire en anglais
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integer :: dmx ! dim. physique des tabealux
integer ! mX,nx,ny ! dim. reelles avec my=nx
real, dimension(dmx,nx) :: x

real, dimension(dmx,ny) :: y,z

! Variables locales

integer tri,j
do i=1,mx ! x(i,1:nx) ligne i de x
do j=1,ny ! y(1:nx,j) colonne j de y
z(i,j)=dot_product(x(i,1:nx),y(1l:nx,j)) ! produit scalaire ligne*colonne
end do
end do
end

Remarque 6.5 1l existe une fonction intrinséque matmul qui calcule le produit de deux matrices
ou d’une matrice et d’un vecteur avec les contraintes mathématiques habituelles sur les dimensions.

Comme signalé dans le chapitre sur les tableaux, les matrices sont stockées en mémoire
colonne aprés colonne, i.e. les vecteurs colonnes sont stockés les uns & la suite des autres dans des
zones mémoires contigués. En fait, en mémoire, une matrice n’est qu’un long vecteur composé de
colonnes de la matrice. Comme pour tout vecteur, un programme (ou un sous—programme) peut
donc transmettre seulement une portion de ce «super—vecteur» & un autre. Par exemple, si je veux
faire la, moyenne des éléments de la deuxiéme colonne de la matrice A de ’exemple ci-dessus, je
code simplement

call moyenne(A(2,1) ,ma,ss)

6.5 Bloc interface

Pour éviter les inconvénients de la procédure interne tout en conservant la fiabilité dans la
transmission des arguments, Fortran 90 offre une solution : le bloc interface qui permet de donner, 13
ou il est présent, une visibilité totale sur 'interface d’une procédure externe. Ce bloc interface peut
étre créé par copie de la partie déclarative des arguments formels du sous—programme 3 interfacer.
11 sera inséré dans chaque unité de programme faisant appel au sous—programme externe.

Si on veut fiabiliser les appels & la procédure externe trinome du 6.1.1, on doit inclure un
bloc interface dans le programme racine qui devient

program racine
implicit none
real :: a,b,c
real :: x1,x2

b BLOC INTERFACE - - ——— - mmmmmommmommomm

interface
subroutine trinome(a,b,c,x1,x2)
real, intent(in) :: a,b,c ! arguments donnees
real, intent(out) :: x1,x2 ! arguments resultats

end subroutine trinome
end interface
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print *,’Entrer les coef. a, b, c du trinome :’
read *, a, b, c

call trinome(a,b,c,x1,x2) ! Appel a la procedure trinome

print *,’Les racines sont : ’,x1,x2
end program racine

Dés lors la visibilité du programme racine sur la procédure externe trinome est totale. Il y a un
meilleur controle de cohérence des arguments, lors de la compilation. A la différence de la procédure
interne, la procédure trinome reste une unité de compilation indépendante qui n’a pas accés aux
variables du programme racine.

6.6 Modules

Comme signalé plus haut, le bloc interface d’un sous—programme est a copier dans chaque
unité de programme utilisant cette procédure, ce qui peut paraitre fastidieux et de surcroit sujet a
de nombreuses erreurs de recopie. La premiére solution pour éviter cette recopie d’information est
d’utiliser 'instruction include bien connue des adeptes de la secte C. Mais il y a mieux en Fortran
90 : la notion de module. L’organisation générale d’un module ressemble & celle d’un programme
principal sans corps d’instruction

module nom_module
[declaration]
[ contains
sous programmes exportables]
end module nom_module

La partie déclaration, si présente, ne doit pas contenir de fonctions, ni de format, ni déclarer d’objets
automatiques. Le mot clé contains, s’il est présent, indique la présence de sous—programmes
exportables dans le module.

Par défaut, toute entité (type, variable, sous—programme,...) déclarée dans un module est
exportable. Toutefois, un module peut réserver des entités pour son usage interne : il les déclare alors
comme «privésy dans une déclaration private (pour les entités quelconques) ou avec l’attribut
private (pour les variables) comme dans

module m_mod

integer tt k

integer, private :: i,j ! declaration avec attribut private

private :: sprogl ! declaration private

contains ! mot cle indiquant la presence de sous-prog

subroutine sprogl

end subroutine sprogl
subroutine sprog?2
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end subroutine sprog2
end module m_mod

Dans cet exemple, seuls sont exportables la variable k et le sous—programme sprog?2.
Le mode d’accés par défaut est donc public. Mais ceci peut étre inversé grice a la déclaration

private

placée juste aprés ’en—téte du module. Voici le module m_mod ci-dessus en mode private par
défaut.

module m_mod

private

integer, public N4 ! var. exportable

public :: sprog2 ! sous-prog. exportable

contains ! mot cle indiquant la presence de sous-prog

subroutine sprogil

end subroutine sprogil
subroutine sprog?2

end subroutine sprog2
end module m_mod

Dans le cadre des sous—programmes, un module sert surtout & exporter les données, les blocs
interfaces, les sous—programmes, etc. On accéde aux entités d’un module grice & l'instruction use.
Avant d’étre utilisé, un module doit étre compilé séparément.

Exemple 6.1 (Module avec bloc interface) Voicile module du bloc interface de la procédure
trinome du 6.1.1.

module bi_trinome

interface
subroutine trinome(a,b,c,x1,x2)
real, intent(in) :: a,b,c ! arguments donnees
real, intent(out) :: x1,x2 ! arguments resultats

end subroutine trinome
end interface
end module bi_trinome

Ce module doit étre compilé séparément avant toute utilisation. Supposons que le fichier qui
contient le module avec bloc interface ci—dessus s’appelle bitrinome.f. Aprés compilation on
obtient le fichier objet bitrinome.o et un autre fichier bi_trinome.mod qui contient les informa-
tions du module et qui est utilisé par ’instruction use. A noter que ce dernier fichier porte le nom
donné dans ’en—téte du module et non celui du fichier contenant le module.

Le programme racine utilisant la procédure trinome devient alors :
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program racine

implicit none
real :: a,b,c
real :: x1,x2

print *,’Entrer les coef. a, b, c du trinome :’

read *, a, b, c
call trinome(a,b,c,x1,x2) ! Appel a la procedure trinome

print *,’Les racines sont : ’,x1,x2
end program racine

Notez que l’instruction use bi_trinome apparait bien avant I’instruction implicit none.

Exemple 6.2 (Module avec sous—programme) L’inconvénient avec le bloc interface est sur-
tout que le controle de cohérence se fait entre les paramétres effectifs et les paramétres formels
de l'interface et non pas ceux du sous—programme lui-méme! De plus toute modification dans
I’en—téte du sous—programme doit étre manuellement répercutée dans le module bloc interface qui
doit étre recompilé. Dés lors le module avec sous—programme apparait comme la solution la plus

stre.
Dans le cas de notre procédure trinome, il suffit de 'inclure dans un module comme suit.

module mtrinome

contains ! mot cle indiquant la presence de sous-prog

subroutine trinome(a,b,c,x1,x2)
implicit none

real, intent(in) :: a,b,c ! arguments donnees (coefficients)
real, intent(out) :: x1,x2 ! arguments resultats (racines eventuelles)
real :: delta ! discriminant (variable locale)

delta=b*b-4.0*ax*c;
if (delta<0) then

print *,"Delta<0 : Pas de racines reelles"

x1=0; x2=0
else

x1=-.5x(b-sqrt(delta))/a; x2=-.5*%(b+sqrt(delta))/a
endif

end subroutine trinome
end module mtrinome

Le nom du module doit étre différent de celui de la procédure. Dans le programme racine utilisant
la procédure trinome seule l'instruction d’accés au module change et devient

use mtrinome

Les modules avec sous—programme (procédure ou fonction) offrent donc une interface d’appel
explicite sans les inconvénients du bloc interface.
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6.7 Tableaux dynamiques et pointeurs

Un tableau dynamique ne peut apparaitre en argument formel d’un sous—programme. Les
tableaux dynamiques devront donc étre alloués et libérés dans la méme unité de programme.
Si un tableau dynamique n’est pas libéré avant la fin d’un sous—programme, ’espace mémoire
correspondant deviendra inaccessible durant tout le déroulement du programme.

Il est possible de transmettre un tableau dynamique alloué & un sous—programme. 11 suffit
de prévoir un tableau de profil implicite dans le sous—programme (interface explicite).

Un pointeur apparaissant en argument effectif est (par défaut) traité comme s’il s’agissait
de Pobjet associé. L’argument formel doit simplement étre du méme sous—type que le pointeur
argument effectif et ’interface quelconque.

Si un sous—programme prévoit un pointeur en argument formel, alors I’argument effectif
devra étre obligatoirement un pointeur de méme sous—type. L’information transmise sera alors
Iinformation contenue dans le pointeur (i.e. adresse, dimension,...) et non celle contenue dans
I’objet associé. L’interface explicite est ici obligatoire, sinon c’est 'objet associé qui est transmis
avec des conséquences... & ’exécution.

6.8 Interface explicite : nouvelles possibilités

Nous regroupons dans cette section, les nombreux avantages offerts par une interface ex-
plicite. On rappelle qu’une interface explicite est obtenue dans les cas suivants : sous—programme
interne, bloc interface, module avec bloc interface, module avec sous—programme. Les exemples se-
ront donc donnés dans 'un de ces cas. On rappelle aussi que l'interface des fonctions et procédures
intrinséques (i.e. prédéfinies) est explicite.

6.8.1 Passage de tableaux de "profil implicite"

Grace a 'interface explicite, plus besoin de se préoccuper du profil du tableau a transmettre.
On a juste besoin de connaitre son rang.

Reprenons la procédure ProduitMat du 6.4. On sait que grice aux sections de tableaux, on
peut transmettre que la partie utile d’un tableau. En outre, il existe une fonction intrinséque

size(array [,dim])

qui retourne la taille de array ou ’étendue de array dans la dimension indiquée via dim. On peut
donc se dispenser de transmettre les dimensions pour les récupérer i ’intérieur de la procédure
avec size. La procédure ProduitMat retravaillée devient donc.

subroutine ProduitMat(x,y,z)

implicit none ! ne jamais 1l’oublier
real, dimension(:,:), intent(in) :: x,y ! rang de x, y
real, dimension(:,:), intent(out) :: z ! rang de z

! Variables locales

integer I mx,ny ! dim. reelles avec my=nx
integer HE WA ! compteur
mx=size(x,dim=1) ! nb. de lignes de x

ny=size(y,dim=2) ! nb. de colonnes de y



6.8. INTERFACE EXPLICITE : NOUVELLES POSSIBILITES 65

do i=1,mx
do j=1,ny
z(i,j)=dot_product (x(i,:),y(:,3)) ! produit scalaire ligne*colonne
end do
end do
end subroutine ProduitMat

On a donc juste déclaré le rang des arguments tableaux x, y et z. Le programme matrice qui
I'utilise doit incorporer, par exemple, son interface.

program matrice

implicit none ne jamais oublier

!
integer, parameter :: nmax=100 ! dim. physique des tableaux
real, dimension(nmax,nmax) :: A,B,C ! declaration des tableaux
integer :: ma,na ! dim. reelles de A
integer :: mb,nb ! dim. reelles de B
integer tri,j
et it BLOC INTERFACE -------mmm e -
interface
subroutine ProduitMat(x,y,z)
real, dimension(:,:), intent(in) :: x,y ! rang de x, y
real, dimension(:,:), intent(out) :: z ! rang de z

end subroutine ProduitMat
end interface

! Lecture des dimensions

print *, ’dimension de A : ma na °’
read *, ma,na

print *, ’dimension de B : mb nb ’
read *, mb,nb

if (na /= mb) then
print *,’Le produit matriciel est impossible’
stop ! on arrete le programme

endif

call ProduitMat(A(1:ma,1:na),B(1:mb,1:nb),C(1:ma,1:nb))
end program matrice

L’appel & ProduitMat doit se faire obligatoirement avec des sections de tableau précisant les blocs
utiles.

6.8.2 Tableaux automatiques

Comme les autres variables locales non initialisées, les tableaux déclarés localement voient
leur emplacement alloué & chaque appel. La nouveauté avec Fortran 90 est qu’on peut faire varier
les profils de ces tableaux d’'un appel & un autre. Ce qui est trés utile lorsqu’on a besoin d’un
tableau auxiliaire.
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Voici, comme exemple, une procédure qui échange la valeur de deux matrices (i.e. tableaux
de rang 2). On utilise la fonction size vue a la Section 6.8.1.

subroutine SwapMat(x,y)

implicit none ! ne jamais 1’oublier
real, dimension(:,:) :: x,y ! matrices a echanger
real, dimension(size(x,dim=1),size(x,dim=2)) :: z ! matrice auxiliaire
Z=X; X=y; y=2 ! C’est tout!!!

end subroutine SwapMat

Pour procéder a I’échange, le sous—programme a besoin d’une matrice auxiliaire z de méme profil
que les deux autres. La fonction intrinséque size nous permet de récupérer I’étendue de chaque
dimension de la matrice x. Ce qui nous permet d’avoir son profil.

Remarque 6.6 La fonction intrinséque size n’étant pas qualifiée pour Uinitialisation, il n’est pas
possible de récupérer sa valeur en dehors de attribut dimension. Donc impossible de passer par
une constante symbolique pour alléger la déclaration de la matrice z.

Le programme qui fait appel & SwapMat doit simplement avoir une interface explicite avec
SwapMat pour que le compilateur puisse prévoir de transmettre correctement les informations né-
cessaires. En voici un exemple avec un bloc interface comme interface explicite.

program EchangeMatrice

implicit none ! toujours present
integer,parameter :: nmax=100 ! taille max. des tableaux
real,dimension(nmax,nmax) :: a,b ! tableaux a echanger
integer HEES ] ! taille reelle des tableaux

interface
subroutine SwapMat(x,y)
real, dimension(:,:) :: X,y ! matrices a echanger
end subroutine SwapMat
end interface

call SwapMat(a,b) ! on echange tout le contenu

call SwapMat(a(1l:n,1:n),b(1:n,1:n)) ! on echange que les blocs utiles

end program EchangeMatrice

6.8.3 Fonction a valeur tableau

Comme Fortran 90 accepte les expressions tableaux, il est tout & fait naturel qu’il accepte
qu’une fonction fournisse un résultat de type tableau. Ce dernier peut étre directement incorporer
dans des expressions tableaux sans passer par des affectations intermédiaires.
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Voici une fonction fournissant comme résultat la matrice de Hilbert d’ordre n. On rappelle
que la matrice de Hilbert d’ordre n est la matrice symétrique définie par H;; = 1/(i + j — 1),
h,j=1,2,...,n.

function HilbertMat(n)

implicit none ! Ne jamais oublier

integer, parameter :: r8=kind(1.d0) ! on travaille en double
integer, intent(in) :: n ! taille de la matrice

real (kind=r8), dimension(n,n) :: HilbertMat ! matrice resultat (ajustable)

! variables locales
integer 1i,j

do i=1,n
HilbertMat(i,:)=(/ (1.d40/dble(i+j-1),j=1,n) /)
end

end function HilbertMat

Cette fonction HilbertMat peut alors étre utilisée dans n’importe quelle expression tableau (avec
les régles habituelles relatives aux expressions tableaux) & condition que son interface soit connue.
Voici un exemple d’utilisation avec un bloc interface comme interface explicite.

program MHilbert
implicit none

integer, parameter :: nmx=100
integer, parameter :: ir8=kind(1.d0)
real, dimension(nmx,nmx) :: H
integer i i, n=4
- Bloc interface ---------—------———-——-
interface
function HilbertMat (n)

integer,parameter :: r8=kind(1.40)

integer, intent(in) :: n

real (kind=r8) ,dimension(n,n) :: HilbertMat

end function HilbertMat
end interface

H(1:n,1:n)=HilbertMat(n)+1 ! matrice de Hilbert d’ordre n + 1

end program MHilbert

La matrice de Hilbert a été fabriquée temporairement par la fonction HilbertMat. Son
emplacement est alloué lors de ’appel et libéré a la sortie. On peut donc aboutir, dans certains
cas, a des économies de mémoire.
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6.8.4 Arguments a mot clé

Gréace a l'interface explicite, il devient possible de repérer les arguments d’un sous—program-
me, non seulement classiquement par leur position mais aussi par le nom méme de ’argument
formel.

Par exemple avec le module avec bloc interface de la procédure externe trinome suivant

interface
subroutine trinome(a,b,c,x1,x2)
real, intent(in) :: a,b,c ! arguments donnees
real, intent(out) :: x1,x2 ! arguments resultats

end subroutine trinome
end interface

les appels suivants seraient rigoureusement équivalents :

call trinome(al,bl+al,cl,x,y) ! appel par position

call trinome(a=al,b=al+bl,c=cl,x1=x,x2=y) ! par mot cle dans 1’ordre
call trinome(c=cl,xl=x,a=al,b=al=bl,x2=y) ! par mot cle dans le desordre
call trinome(al,al+bl,cl,x2=y,x1=x) ! mixage

Comme on le voit, & partir du moment ol ’on nomme les arguments, il n’est plus nécessaire
de respecter ’ordre.

6.8.5 Arguments optionnels

Dans certains cas, on n’a pas besoin de tous les arguments d’un sous—programme. L’attribut
optional permet de déclarer certains arguments comme optionnels. Leur présence lors de I’appel
sera testée grace a la fonction intrinséque present.

Exemple 6.3 Soit a écrire une procédure maxmin qui cherche 1’élément minimum et maximum
d’un vecteur passé en argument. En option, on pourra avoir en sortie ’indice de 1’élément minimum
ou maximum. Nous avons choisi le module avec procédure comme interface explicite.

module mmaxmin

contains

subroutine maxmin(v,vmax,vmin,imax,imin)
real, dimension(:),intent(in) :: v ! vecteur a analyser
real, intent(out) :: vmax,vmin ! elt. max. et min. dans v
real, optional, intent(out) :: imax,imin ! arguments optionnels
real, dimension(1) 1rorg ! rg de taille 1!!!

! pour la recherche, on utilise les fct. intrinseques maxval et minval

vmax=maxval (v) ! maxval -> elt. max. dans v (intrinseque)
vmin=minval(v) ! minval -> elt. min. dans v (intrinseque)

! test de presence des arguments optionnels
! on utlise les fct. intrinseques maxloc et minloc
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if (present(imax)) then
rg=maxloc(v) ! maxloc -> indice elt. max. dans v (intrinseque)
imax=rg(1)

endif

if (present(imin)) then
rg=minloc(v) ! minloc -> indice elt. min. dans v (intrinseque)
imin=rg(1)

endif

end subroutine maxmin
end module mmaxmin

Les fonctions maxloc et minloc fournissent les éléments extrémaux du tableau passé en argument,
voir 7.4.2. Elles renvoie un vecteur dont la taille est le rang du tableau passé en argument. Ici le

tableau passé en argument est de rang 1 (vecteur) donc le résultat de maxloc et minloc sera un
vecteur de longueur 1 et non un scalaire.

Voici un programme qui utilise le module mmaxmin.

program PROGMINMAX

use mmaxmin ! acces au module de maxmin
implicit none

integer, parameter :: nmax=5

real, dimension(nmax) :: v=(/ 1.,2.,9.,4,-8. /)
real :: vmin,vmax

integer :: rgmin,rgmax

————— appel avec tous les arguments ---------
call maxmin(v,vmax,vmin,rgmax,rgmin)

————— appel sans les arguments optionnels ---
call maxmin(v,vmax,vmin)

————— appel sans rgmin ------—-——————————————-
call maxmin(v,vmax,vmin,rgmax)

R appel sans rgmax (mot cle indispensable)
call maxmin(v,vmax,vmin,imin=rgmin)

end program PROGMINMAX

Dans le dernier appel, 'argument imin est utlisé avec mot clé car il est impossible d’omettre un
argument en cours de liste comme dans

call maxmin(v,vmax,vmin, ,rgmin) ! INTERDIT

6.8.6 Partages de données

En Fortran 77, il existe un autre moyen de communication entre unités de compilation autre
que la correspondance par arguments. Ce moyen consiste & définir une zone mémoire commune
grace a la directive common. Cette zone est accessible en consultation et en modification. Pour
qu’elle soit accessible, sa déclaration doit étre recopiée dans les unités de compilation comme pour
le bloc interface, avec tout ce que cela comporte comme risques. De plus les variables déclarées
dans cette zone ne peuvent étre initialisées que dans un bloc spécial appelé block data.

En Fortran 90, le partage de données entre unités de programme se fait en plagant les
variables & partager dans un module. Pour y accéder depuis une unité de compilation, il suffit
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d’utiliser use. L’attribut save sera nécessaire si la variable & exporter n’est pas initialisée (pour
qu’elle devienne statique).

Exemple 6.4 Voici un exemple de module de partage de données.

module mdonnees
implicit none
integer, parameter :: nmax=10 ! variable statique
integer, dimension(mmax), save :: coeff ! save obligatoire
end module mdonnees

subroutine impdonnees
use mdonnees
integer :: 1

print ’("Nb elements :",I4)’,nmax

print ’("Coeff=",10I3)’, (coeff(i),i=1,nmax)
end subroutine impdonnees

program PARTGDONNEES

use mdonnees ! acces au module mdonnees
integer S |
coeff=(/(i,i=1,nmax)/) ! initialisation du tab. coeff

call impdonnees

end program PARTGDONNEES

Apres compilation séparée et édition de liens, I’exécution donne :

Nb elements : 10
Coeff= 1 2 3 4 5 6 7 8 9 10



CHAPITRE 7

FONCTIONS INTRINSEQUES

Le Fortran 77 était déja riche en fonctions intrinséques (surtout mathématiques). Le Fortran
90 hérite encore d’une foule de nouvelles fonctions prédéfinies. Comme dans MATLAB, les fonctions
mathématiques usuellement appliquées & des scalaires deviennent applicables, en Fortran 90, & des
tableaux et renvoient un tableau. Ainsi, I'instruction

y(1:n)=sin(x(1:n))
est équivalente & la boucle

do i=1,n
y(i)=sin(x(i))
end do

Les fonctions intrinséques ayant toujours une interface explicite, les noms des arguments
donnés dans tout le chapitre sont significatifs. Ils peuvent donc étre utilisés dans les appels avec
mot clé comme

sin(x=1.276543)
mod (a=5,p=2)
7.1 Quelques fonctions numériques intrinséques

Voici quelques fonctions numériques usuelles. Le résultat est du sous—type du ou des argu-
ments sauf pour abs(a) quand a est complexe.

abs(a) valeur absolue. L’argument peut étre integer, real ou complex. Dans ce
dernier cas le résultat est un réel, le module du nombre complexe argument.

aimag(z) partie imaginaire de z. Le résultat est de type real avec la variante de z

cmplx(x,y) conversion en nombre complexe, convertit le couple de réels (z,y) en =+ iy.

conjg(z) fournit le complexe conjugué du complexe z.

dble(x) conversion en double précision.

int (a) partie entiére du réel a.

min(al,a2,...) valeur minimale des arguments.

max(al,a2,...) valeur maximale des arguments.

mod (a,p) reste de la division de a par p.

real(a) conversion en réel. Si a est de type complex, le résultat est la partie réelle.
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7.2 Quelques fonctions mathématiques intrinséques

Leur argument s’appelle toujours x. Voici quelques unes.

acos(x), asin(x) arccosx et arcsinz, avec |z| < 1.
atan(x) arctanxz
cos(x), sin(x), tan(x) cosx, sinz et tanx.

cosh(x), sinh(x), tanh(x) coshz, sinhz et tanhz.
exp(x), log(x), loglO(x) €% Inx et logz.
sqrt (x) vz, z > 0.

7.3 Quelques fonctions de précision

range (x) pour le sous—type de argument entier ou réel x fourni, retourne la valeur
entiére maximale de ’exposant r tel que :

e |z| < 10" soit représentable, si = est entier
e 107" < |z| < 10" soit représentable, si x est réel.

precision(x) retourne le nombre maximal de chiffres décimaux significatifs pour le sous—
type de Pargument réel fourni.

epsilon(x) retourne la quantité considérée comme négligeable devant 1, pour le sous—
type réel foruni.

tiny(x) retourne la plus petite valeur réelle représentable dans le sous—type de x
(i.e. limite d’underflow).

huge (%) retourne la plus grande valeur réelle représentable dans le sous—type de x
(i.e. limite d’overflow).

7.4 Quelques fonctions relatives aux tableaux

Comme déja signalé plus haut, toutes les fonctions prédéfinies élémentaires classiques sont
applicables aux tableaux et renvoient un tableau. Nous ne présentons ici que les fonctions spécifiques
aux tableaux. Les arguments optionnels seront représentés entre [].

7.4.1 Interrogation sur le profil
shape (source) retourne le profil du tableau source passé en argument. Le résultat est un
vecteur de taille le rang du tableau argument.

size(array [,dim]) retourne la taille ou ’étendue de la dimension indiquée via dim du tableau
array passé en argument.

lbound(array [,dim]) retourne, en ’absence de dim, les bornes inférieures du tableau array.
Lorsque dim est présent, renvoie la borne inférieure de la dimension spécifiée.

ubound (array [,dim]) comme lbound mais renvoie les bornes supérieures.

Soit la déclaration suivante
integer, dimension(-2:27,0:49) :: T

Voici le résultat de ’application des fonctions ci—dessus au tableau T.
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shape (T) vaut (/30,50/)
size(T) vaut 1500
size(T,dim=1) vaut 30

ubound (T) vaut (/27,49/)
ubound (T,dim=2) vaut 49

1bound (T) vaut (/-2,0/)
1bound (T,dim=1) vaut -2

7.4.2 Interrogation sur le contenu

Plus la peine d’écrire et réécrire des boucles pour connaitre ol se trouve le plus grand ou le
plus petit élément d’un tableau. Les fonctions

minloc(array [,mask])
maxloc(array [,mask])

fournissent un vecteur d’entiers (de taille égale au rang de array), dont les valeurs repérent un

élément respectivement minimal et maximal. mask, s’il est présent, doit &tre un tableau logique

conformant avec le tableau array. En pratique, mask est un «filtrey sous forme d’expression logique

de sorte que seuls sont pris en compte les éléments de array associés & une valeur .true. de mask.
Soit le tableau d’entier suivant

integer, dimension(5) :: v=(/ 2,-1,10,3,-1 /)

Alors on a
minloc(v) vaut (/2 /), ie. v(2) élément minimal
maxloc(v) vaut (/ 37/), i.e.v(3) élément maximal

Les tableaux renvoyés par minloc maxloc dans le cas ci—dessus sont des vecteurs de taille 1, i.e. le
rang de v.
Soit maintenant la matrice a déclarée comme suit

integer, dimension(0:2,-1:2) :: a

dont le contenu est

0 -5 8 -3

3 4 -1 2

1 5 6 —4
Alors on a
maxloc (a,mask=a<b) vaut (/ 2,2 /), ie. a(2,2) estle max des a;; <5
minloc(a,mask=a>5) vaut (/ 3,3 /), ie. a(3,3) estle min des a;; > 5

7.4.3 Fonctions de réduction

Ces fonctions sont appelées ainsi parce que, appliquées & un tableau de rang n, le résultat
est soit scalaire soit de rang n — 1.

On veut juste connaitre la valeur minimale ou maximale dans un tableau ? Pas de probléme !
Les fonctions

minval (array [,dim][,mask])
maxval (array [,dim][,mask])
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fournissent les éléments extrémaux du tableau array. Si mask est présent, il sert de «filtre» comme
pour minloc et maxloc. Si dim est présent, la recherche se fait sur toutes les sections de array
qu’on peut obtenir en fixant tous les indices sauf celui relatif & la dimension spécifiée par dim. C’est
un peu compliqué mais voyant un exemple. Soit le tableau A dont le contenu est

1 3 5
2 4 6

minval(A) vaut 1 (retourne le plus petit élément de A)
maxval (A) vaut 6 (retourne le plus grand élément de A)
minval(A,dim=1) vaut (/ 1,3,5 /) (recherche par colonne)
minval (A,dim=2) vaut /1,2 /) (recherche par ligne)
maxval (A,dim=1) vaut (/ 2,4,6 /) (recherche par colonne)
maxval (A,dim=2) vaut (/ 5,6 /) (recherche par ligne)

minval (A,dim=1,mask=A>1)  vaut (/ 2,3,5 /)
maxval (A,dim=2,mask=A<3) vaut 1,2 /)

Voici deux autres fonctions de réduction importantes qui fournissent, respectivement, la
somme et le produit des éléments d’un tableau.

sum(array [,dim][,mask])
product(array [,dim][,mask])

Le sous type résultat est celui de array. Les arguments optionnels dim et mask fonctionnement de
la méme maniére qu’avec minval et maxval.

Remarque 7.1 Siarray est vide ou si mask=.false. sum retourne O et product retourne 1. ¢

Soit x=(/ 2,5,-6 /). Alors on a

sum(x) vaut 1
product (x) vaut -60
Appliquons les fonctions sum et product au tableau A utilisé pour minval et maxval.
sum(A,dim=1) vaut (/ 3,7,11 /), somme sur les colonnes
sum(A,dim=2,mask=A<2) vaut (/ 1,0 /), somme sur les lignes, & cause de mask=A<2,
la 2éme ligne est vide donc sum retourne 0.
product (A,dim=2) vaut (/ 15,48 /)

product (A,dim=1,mask=A>4) vaut (/ 1,1,30 /), a cause de mask=A>4, les 2 premiéres co-
lonnes sont vides donc product retourne 1.

7.4.4 Fonctions de multiplications

En Fortran 90, il existe deux fonctions de multiplication
dot_product(vector_a,vector_b) retourne le produit scalaire de deux vecteurs passés en argu-
ment.

matmul (matrix_a,matrix_b) effectue le produit de deux matrices ou d’une matrice et d’un
vecteur. Les arguments doivent respecter les contraintes usuelles
sur le produit matriciel.
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Soit les vecteurs vi=(/ 2,-3,-1 /) et v2=(/ 6,3,3 /). Alors on a
dot_product(vl,v2) vaut 0
dot_product(vi(l :2),v2(1 :2)) vaut 3

Soit le vecteur v=(/ 2,-4,1 /) et la matrice A dont le contenu est

3 -6 -1
2 3 1
-1 -2 4
Alors on a
matmul (A,v) vaut (/ 29,-7,10 /)
matmul (A(1 :2,1 :2),v(2 :3) vaut (/ -18,5 /)

7.4.5 Fonctions de transformations

1l existe plusieurs fonctions de transformations en Fortran 90 mais nous ne donnons ici que
celle qui nous semble la plus utile pour le cours de Programmation Numérique, & savoir la fonction

transpose (array)

qui fournit la transposée de la matrice (i.e. tableau de rang 2) passée en argument. Donc si array
est de profil (/m,n/), le tableau resultat sera de profil (/n,m/).
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CHAPITRE 8

FICHIERS

Un fichier est une liste d’enregistrements stockés en mémoire auxiliaire. La taille du fichier

est le nombre d’enregistrements. Pour un fichier texte (i.e. lisible par le programmeur) chaque ligne
est un enregistrement. Pour un fichier binaire, un enregistrement est une liste d’entrée/sortie.

8.1 Ouverture et fermeture : open/close

En Fortran, un fichier est identifié par un entier naturel appelé numéro d’unité logique.

L’association fichier externe/ numéro d’unité logique se fait & l'ouverture du fichier par l'ordre
open comme suit (avec les spécifications les plus utiles seulement,)

open([unit=]unite_logique, file=nomfichier, iostat=ierr, status=etat, &

avec

access=methode, action=mode, recl=long)

— unit=unite_logique spécifie 'unité logique attachée au fichier. Ce nombre doit étre libre,

i.e. ne pas étre attaché a un autre fichier.

— file=nomfichier donne le nom de fichier & associer au numéro d’unité logique
— iostat=ierr récupére l’erreur d’ouverture. Fonctionne comme stat de allocate. Tout

s’est bien passé si & la sortie ierr==0. Si ierr >0 le fichier n’a pu étre ouvert.

N

— status=etat spécifie le statut du fichier & ouvrir. etat peut prendre 'une des valeurs

suivantes

— 701d’ le fichier existe (erreur s’il n’existe pas)

— ’new’ le fichier n’existe pas (erreur s’il existe)

— ’replace’ ’ancien fichier sera détruit

— ’scratch’ fichier temporaire, sera détruit & la fermeture

— access=methode spécifie la méthode d’accés au fichier. methode peut prendre 'une des

valeurs suivantes

— ’sequential’ fichier & accés séquentiel (ligne par ligne). C’est la méthode par défaut.

— ’direct’ fichier & accés direct. La longueur de chaque enregistrement recl doit étre
connue.

— action=mode spécifie ce qui peut étre fait du fichier & ouvrir. mode peut prendre 'une des

valeurs suivantes
— ’read’ ouverture en lecture seulement
— ’write’ ouverture en écriture seulement

7
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— ’readwrite’ ouverture en lecture/écriture. C’est le mode d’ouverture par défaut.

- recl=long spécifie la longueur d’un enregistrement pour un fichier & accés direct.

Voici un exemple d’ouverture de fichier avec test d’erreur d’ouverture.

open(l,file=’output.dat’,iostat=ierr,status=’replace’,&
access=’sequential’,action=’write’)
if (ierr /= 0) then
print *,’Impossible de creer ’’output.dat’’ ?’
stop
endif

La fermeture d’un fichier se fait simplement par

close(unite_logique)

8.2 Lecture et écriture : read/write

La syntaxe de l'ordre de lecture dans un fichier est la suivante (avec les spécifications les
plus utiles)

read (unite_logique, [fmt=]format, iostat=ierr) liste

avec

— unite_logique un numéro d’unité logique valide ou * pour spécifier I'unité de lecture
standard (i.e. le clavier).

— [fmt=]format fournit la spécification de format pour les données 3 lire. En général il faut
éviter les formats en lecture sauf quand le fichier & lire est formaté.

— iostat=ierr récupére (dans la variable entiére ierr) l'erreur de lecture. Si ierr==0, tout
s’est bien passé. Si ierr<0 c’est la fin du fichier a lire. Si ierr>0, il y a eu erreur de lecture
(enregistrement insuffisant, fichier devenu inaccessible, ...)

L’ordre d’écriture write a la méme syntaxe

write(unite_logique, [fmt=]format, iostat=ierr) liste

Les spécifications ont la méme signification que dans read. Si unite_logique vaut *, ¢’est la sortie
standard (i.e. ’écran) qui est utilisé.

Remarque 8.1 L’unité logique standard d’entrée/sortie * (i.e. le clavier ou l’écran) s’utilise di-
rectement sans passer par open.

Exemple 8.1 (Création d’un fichier contenant la matrice de Hilbert) Le programme
suivant crée un fichier hilbertmat.dat contenant la matrice de Hilbert d’ordre n. La prémiére
ligne du fichier contient ’ordre de la matrice puis les suivantes les lignes de la matrices.

program HILBERTMAT
implicit none

character (len=*), parameter :: fmt=’(10F12.8)°
real(8), dimension(:,:), allocatable :: a
integer t:n,i,j

! Lecture de la dimension n
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! le facteur de repetition est 10
! donc pas plus de 10 nombres sur une meme ligne
do

print *,’Entrer la taille de la matrice n<=10 : ?’

read *,n

if (n<=10) exit
end do
allocate(a(n,n)) ! allocation de a
do i=1,n

a(i,:)=(/ (1.40/dble(i+j-1),j=1,n) /)
end do

! remplissage de a ligne par ligne

! ouverture du fichier hilbertmat.dat en ecriture
open(l,file=’hilbertmat.dat’,status=’replace’,action=’write’)
write(1,°(I4)’) n ! ecriture de la dimension de a
do i=1,n

write(1,fmt) (a(i,j),j=1,n)
end do

! ecriture des ligne de a

! fermeture du fichier hilbertmat.dat
close(1)
end program HILBERTMAT

Aprés exécution, avec n = 5, on trouve dans le fichier hilbertmat.dat :

Pour lire le fichier hilbertmat.dat, il suffit remplacer write par read.

! ouverture du fichier hilbertmat.dat en lecture

5

1.00000000 0.50000000 0.33333333 0.25000000 0.20000000
0.50000000 0.33333333 0.25000000 0.20000000 0.16666667
0.33333333 0.25000000 0.20000000 0.16666667 0.14285714
0.25000000 0.20000000 0.16666667 0.14285714 0.12500000
0.20000000 0.16666667 0.14285714 0.12500000 0.11111111

open(l,file="hilbertmat.dat’,status=’0ld’ ,action=’read’)
read(1,*) n

do i=1,n

read(1,*) (a(i,j),j=1,n)

end do

! lecture de la dimension de a

! lecture des ligne de a

79

Les formats sont déconseillés en lecture pour permettre la lecture des nombres tels quels avec les
blancs comme séparateurs.
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ANNEXE A

FACTORISATION LU ET APPLICATIONS

A.1 La méthode

Soit, & resoudre le systéme linéaire
A-z=0b, (A.1)

ol A = (a;;) est une matrice n x n et b un vecteur de R™. Supposons qu’on puisse mettre A sous
la forme
A=L-U, (A.2)

ol L est une matrice triangulaire inférieure (lower en anglais) et U une matrice triangulaire supé-
rieure (upper en anglais). Pour la suite, on pose

£y 0 -0 Ul Uiz ot Ulp
by Hlog - 0 0 U2 +++  U2p
L - . . R . ) U =

A Taide de la décomposition (A.2), le systéme (A.1) devient
(L-U)-x2=L-(U-x)=b.

Le systéme (A.1) peut alors étre résolu en deux étapes.
1. On résoud d’abord le systéme intermédiaire en y

L-y=hb. (A.3)
2. On résoud ensuite le systéme final en z
U-z=y. (A.9)

Comme les matrices L et U sont triangulaires, les systémes (A.3)-(A.4) sont résolus par
substitution. La solution de (A.3) est

b

= 5_17 (A.5)
11
1 i—1
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et celle de (A.4)

Yn
T, = —, A7
" Unn (A1)
1 n
xz:— Yi — Zuijxj y i:n—l,n—2,...,1. (AS)
Ui J=i+1

A.2 L’algorithme de décomposition

L’algorithme de décomposition LU d’une matrice est le suivant (voir cours d’Analyse Nu-
mérique pour les détails).

#0. l;=1,i=1,2,...,n.
#1. Pour chaque j =1,2,...,n faire
#1.1 Pouri=1,2,...,j

i—1
wig = ai; — Y Lkt (A.9)
k=1
#1.2 Pouri=j+1,...,n
1 =
lij = — |ai; — Z&kukj (A.10)
Ui k=1

L’élément u;; de la formule (A.10) est le pivot. Pour des raisons de stabilité numérique, |u;;|
ne doit pas étre trop petit. Une maniére simple pour augmenter la stabilité de la méthode est la
recherche d’un pivot partiel. Le candidat au role de pivot est donné par

max |u;l.

j<i<n
Le terme de pivot partiel vient du fait que la recherche n’est effectuée que sur une partie de la
colonne. Si le candidat au role de pivot est sur une ligne iy # j, il faut permuter les lignes iy et j

en prenant soins d’enregistrer les lignes permutées et le nombre de permutations. Dans la section
suivante on verra pourquoi enregistrer les permutations.

A.3 Les applications

Une fois obtenue la décomposition LU de A, le systéme (A.1) peut étre résolu avec différents
second membres. On se limite alors aux substitutions (A.5)-(A.8). Les permutations éventuelles
des lignes, soigneusement, enregistrées lors de la décomposition, sont alors appliquées aux différents
second membres.

On peut aussi calculer le déterminant de A & partir de sa décomposition LU. On a

det A = (71)1)1_[““‘,
i=1

ol p est le nombre de permutations effectuées lors de la décomposition.
Pour calculer I’inverse de A on doit resoudre n systémes linéaires auxiliaires. Soit ¢;, le i—éme
vecteur de la base canonique de R™ et I,, la matrice unité d’ordre n. On a que I = (e1 e3 - - €y,).
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La matrice inverse de A est donc construite colonne aprés colonne, en resolvant les n systémes
linéaires en I;
A-Z;=¢;, 1=12,...,n (A.11)
On a donc, & la fin des calculs, A= = (%1 2o -+ Ty).
On remarquera au passage qu’il est plus cotiteux d’inverser une matrice que de résoudre un
systéme linéaire.

A.4 Les problémes de stockage

On a pas besoin de stocker les matrices L et U séparement. Les formules (A.5)-(A.8) sont
telles que les matrices L et U peuvent étre stockées sous la forme

Uil Uiz U113 - Uln
lo1 U2 ugz - Uzp
loy f32 uzz - U3
gnl €n2 €n3 e Unn

La diagonale de L n’est pas stockée, puisqu’elle ne contient que des 1 (voir cours d’Analyse Num.).
Pour i = j, la formule (A.9) est parfaitement identique & (A.10), & un facteur multiplicatif
prés. En effet, pour ¢ = j, la formule (A.9) devient

j—-1
iy = ag; = Y Likun.
k=1
Si on pose
Jj—1
lij = aij — Y ligtigj,
k=1
on voit qu’on peut d’abord calculer tous les termes w;;, %11 j,...,{n;; pour rechercher le pivot.
Comme ¢;; = {;;/u;j, pour i = j+1,...,n, il suffit ensuite de diviser les termes ¢;11 ;,. .., s, par
le pivot.

Et toutes ces opérations peuvent s’effectuer dans la méme matrice A du systéme de départ
(A.1). Dans ce cas a la fin des calculs, la matrice A est remplacée par sa décomposition LU.

A noter que le stockage de matrices en Fortran permet de construire A~! dans (A.11) sans
utilisation de vecteurs auxiliaires.

A.5 Le code Fortran a écrire

Le but du TP est d’écrire un code Fortran comprenant un programme principal et un module
LU dans un fichier séparé. Le programme principal doit pouvoir, grace au module LU, resoudre
un systéme linéaire, calculer le déterminant d’une matrice ou inverser une matrice. Pour cela le
module LU doit avoir en entrée un indice de choix ichoix tel que

ichoix=1 Le module effectue la décomposition LU et resoud le systéme Ax = b.
ichoix=2 Le module effectue la décomposition LU seulement.

ichoix=3 Le module resoud Az = b par substitution. On suppose donc que la matrice a deja été
décomposée.
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Le module doit aussi avoir un indice d’erreur ierr en sortie :
ierr=0 La décomposition s’est effectuée normalement

ierr=1 La décomposition a echouée parce que la matrice A est singuliére, i.e. un pivot nul a été
trouvé.

On pourra utiliser les problémes test suivants

4 -1 -1 0 4 2
1 4 0 -1 4 . ]2
A=1_0 g 4 | b=l a T
0 -1 -1 4 4 2
11 2 1 1/4
A=1|1 2 1|, b=|1], 2a*=1| 1/
01 3 1 1/4

Pour la robustesse, on peut inverser la matrice de Hilbert H = (h;;); j—1,..n avec

1

SR |

Vi,j=1,...,n.

Il faut prendre n = 50, 100, 250, 500, . ..
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METHODES ITERATIVES DE
RESOLUTION DE SYSTEMES LINEAIRES

B.1 Principe
On souhaite résoudre le systéme linéaire
Az =b (B.1)

ol z et b sont des vecteurs de R™ et A = (a;;) est une matrice n x n de rang plein. Soit z* 'unique
solution de (B.1). Lorsque n est trés grand ou lorsque le matrice A est creuse, les méthodes directes
(Gauss, décomposition,...) deviennent moins compétitives & cause du cott de calcul et des erreurs
d’arrondis..

Notons que (B.1) est équivalent & Az —b = 0. Soit 2° un vecteur quelconque de R"™. Formons
r0 = Az® — b, vecteur de R™ appelé résidu du systéme (B.1).

Le principe des itérations est le suivant : on part d’un vecteur z° et ’on forme r° puis on
construit, & partir de 2°, ' et l'on a le résidu correspondant r!. Le processus se poursuit jusqu’a
ce qu’un critére d’arrét soit vérifié. On obtient ainsi une suite {#*} de vecteurs de R™.

Le principe des méthodes itératives est donc la construction d’une suite {z"};>0 de vecteurs
de R™, définie par la relation

z° e R,
1’k+1 _ H(xk)

avec H : R"™ — R" choisie pour que z = H(z) & Az =b.

B.2 Convergence des méthodes itératives

Les méthodes itératives étudiées dans ce TP correspondent & une méthode de décomposition
de la matrice A de (B.1) sous la forme A = M — N, ou M est supposée non singuliére. Le systéme
(B.1) peut alors s’écrire

Mz = Nz+0b,

i.e. comme le probléme de point fixe (quand M est inversible!!)

x=(M"'N)x+ M b (B.2)
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Le probléme de point fixe (B.2) introduit un schéma récursif, a savoir

avec H : x — (M~1N)z + M~'b. Pour z* la solution de (B.1), on a
xk—&-l = (M_IN)k+l(.’L‘* _ J)O).
On doit donc étudier la convergence de la suite de matrices {(M ~'N)*};>0.

Théoréme 1 Les trois propositions suivantes sont équivalentes.
(i) La méthode (B.3) est convergente
(i) p(M~IN) <1, i.e. le rayon spectral' de la matrice M~ N est strictement inférieur a 1.

(iii) || M~IN ||< 1, pour au moins une norme matricielle subordonnée.

B.3 Schémas itératifs particuliers

On présente maintenant 3 classes de schémas reposant sur des décompositions de A construites
A partir des éléments suivants : D, FE et I’ définis comme sur la figure B.1.

Fic. B.1 — Décomposition générale de la matrice A

D = diag{a11,-..,ann} est la diagonale de A. Les matrices —F et —F sont les parties de A
triangulaires respectivement au dessous et au dessus de la diagonale. On adonc A=D — E — F.

B.3.1 La méthode de Jacobi
On pose M = D, N = E + F. Le schéma itératif est donc
Dzt = (E + F)aF +b.
En explicitant, on trouve
k1l L - k - k .
;T = o b; —j;aijosj —j;laijxj , 1=1,2,...,n. (B.4)

En pratique, on applique la méthode de Jacobi essentiellement aux matrices & diagonale dominante,

i.e. vérifiant
lai;| > Z ||
ki

1C’est la plus grande, en module, des valeurs propres d’une matrice
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B.3.2 La méthode de Gauss—Seidel
On pose M = D — E, N = F. Le schéma itératif est

(D — E)z**t! = Fzk 4+ 0.

En explicitant, on trouve

1 i—1 n

k+1 _ § k+1 § k s

Z; = CL_ b, - aijxj — aijxj 5 1= 1,2,...,77,. (B5)
v j=1 j=i+1

Remarques (i) La méthode de Jacobi requiert le stockage simultané de z* et z*t!, ce qui peut
étre génant pour des trés gros systémes. Néanmoins elle présente ’avantage d’étre fortement pa-
rallélisable.

(ii) La méthode de Gauss—Seidel ne nécessite que le stockage d’un seul vecteur. Le gros
inconvénient est qu’elle est trop séquentielle.

B.3.3 Meéthode de relaxation

On peut accélérer les méthodes précédentes en introduisant un coefficient de relazation w.
On obtient la méthode dite de relaxation. En fait on utilisera cette idée surtout avec la méthode
de Gauss—Seidel. La décomposition correspondante est

m=2_p ~Nn-"“pyir
w w
w < 1 on parle de sous—relazation
w > 1 on parle de sur—relazation
w =1 Cc’est la méthode de Gauss—Seidel

Le schéma itératif est

En développant, on trouve

i—1 n
k+1 _ E, Y k+1 k
;7 = (1—-w)xi + P by — E aigr; T — g aijT;
w j=1 j=i+1

On montre que pour 0 < w < 2, la méthode de relaxation converge. La grande difficulté
dans la mise en ceuvre des méthodes de relaxation est le calibrage du coefficient w.

B.4 Le critére d’arrét

Les critéres d’arrét les plus utilisés reposent sur 1’utilisation des normes vectorielles et ma-
tricielles. En effet, on stoppe la méthode dés que

[zt — 2" |

T S (B.6)
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ou
| Az* —b |

1ol

Le choix de la norme est & la discrétion du programmeur. Pour mémoire les normes les plus utilisées
dans les cas vectoriel sont

<e. (B.7)

olh="lud
" 1/2
o= [ZW]

i=1

|0 [loo= max |uv;|
i=1l..n

B.5 LeTP

Ecrire un programme Fortran permettant la résolution d’un systéme linéaire saisi par fichier
par 'une des méthodes suivantes :

— Jacobi

- Gauss—Seidel

— Relaxation.
Une précision de convergence ¢ et un point de départ z° étant donnés, le programme fournira :

— la solution trouvée

— le nombre d’itérations

Pour la relaxation, on pourra étudier I’influence de w en complétant le tableau suivant

w .1/1.2(.3/.4|.5|.6|.7|.8.9/1.0(1.1]1.2]1.3|1.4
Nb iter.

w 1.511.6 1.7 1.8 1.9
Nb iter.

On pourra utiliser le probléme test suivant

4 -1 -1 0 4 2

1 4 0 -1 4 .| o2
A=1 40 0 4 a0 =g =] g
0 -1 —1 4 4 9



ANNEXE C

LA METHODE QR

La méthode QR est 'une des méthodes les plus utilisées pour le calcul de ’ensemble des
valeurs propres d’une matrices quelconque, notamment symétrique. Nous présentons une forme
simplifiée pour les besoins du TP.

C.1 Le principe

Soit A = Aj une matrice carrée quelconque ; on écrit sa factorisation QR par la méthode de
Householder, soit Ag = QoRy. On forme alors A; en commutant Qg et Ry, soit A; = RyQo. On
factorise ensuite Aj, soit A1 = Q1 R, et ainsi de suite. On obtient une suite de matrices {Ax} qui
sont toutes semblables & A puisque

A1 = RoQo = QF AQo
Ap = RiQp = QF Ap—1Qp = (QoQ1 - Q)T A(QoQ1 -+ Qi).

La matrice Ay est donc I’espression de A dans la base formée par les vecteurs colonnes de la matrice

Qk-
Sous certaines hypothéses, on montre que les éléments diagonaux des matrices Ay convergent
vers les valeurs propres de A.

C.2 La factorisation QR

On appelle matrice de Householder une matrice de la forme

’U’UT

pour un vecteur v non nul de R™. La matrice H, est symétrique et orthogonale. L’intérét des
matrices de Householder, en Analyse Numérique, provient du résultat suivant.

Théoréme 2 Soit v un vecteur de R™ tel que || v ||> 0. Il existe deux matrices de Householder
H, telles que les (n — 1) derniéres composantes de H, - v soit nulles.

A I’aide du théoréme 2, on montre que toute matrice inversible admet une factorisation QR.
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L’existence des matrices @ et R pour une matrice carrée symétrique A est donc établie.
Maintenant il nous faut construire la matrice de Householder utilisée pour construire @) et R.
Rappelons que la matrice H doit avoir la propriéte suivante, pour u € R",

u; pouri=1,....k—1

(tru); = {

0 pouri=k+1,...,n.

Soit k, 'indice de la colonne de la matrice A & traiter. Des considérations précédentes, la
matrice de Householder (C.1) est construite & partir du vecteur

0

0
v® = | agg + signe(agk)s |, (C.2)
Qk+1,k

Qnk
ou .
S = ((akk)2 + o+ (ank)2) 2.

Le choix du signe dans la k—iéme composante est di au souci d’éviter les dénominateurs trop
«petitsy» dans (C.1).

C.3 L’algorithme

La description formelle de lalgorithme QR de diagonalisation est la suivante.
Etape 0. Ap=A

Etape k. Construire Q et R telles que Ay = QR.
Construire A1 en commutant le produit, i.e. Ax41 = RQ.
Tester le plus grand élément non diagonal de Ay 1.

La matrice @y est elle-méme le produit des matrices de Householder H :
Qr=H, Hy - -H,

Théoréme 3 (Convergence de la méthode QR) On suppose que la matrice A est inversible,
et que ses valeurs propres \;, 1 < i < n, sont toutes de modules différents. Alors la suite de
matrices { Ay} est telle que
k—-+oco
kEToo(Ak)ij =0, 1<5<i<n.
La matrice limite des Ay n’est donc pas diagonale pour une matrice A quelconque. Concré-
tement, le «coeury de lalgorithme de diagonalisation QR est le suivant.

Algorithme QR

1. Initialisation Q < I



C4. LETP 91

2. Pour k=1,....n—1.
Calcul de v* donné par (C.2). r « /2s(s + |agk|) = v* ||.
wk vk /7.
Calcul de H : Hij — 5ij — 211}5'[05:
Calculde Q : Q — Q- H
Calculde HA: A—H-A
3. Mise a jourde A : A— A-Q.
4. Test sur les éléments non diagonaux. Si le test n’est pas vérifié aller en 1.

Remarque. Par construction, wfwf =0, i=1,....,k—1louj=1,...,k—1.
Le calcul de H pourra se faire comme suit (en ayant pris soin d’initialiser H par la matrice
indentité)
Hyj — —2wfwh, &k <ij<
7,jH wiwj> _Z,]_’I’L
Hy —1+Hy;, k<i<n.

C4 LeTP

Ecrire un programme Fortran de recherche de valeurs propres d’une matrice par la méthode
QR. Compte tenu du colt (en nombre d’opérations) de la méthode on se limitera aux matrices
d’ordre au plus 25.

1l faut prévoir un test de secours sur le nombre d’itérations et les éléments sous—diagonaux.
Il n’y a, en effet, aucune garantie sur la diagonalisation si la matrice n’est pas symétrique.

On pourra tester le programme sur les matrices suivantes.

11 2
A=11 2 1 |, Xx=(1,1,4)
01 3
41 0
A= 1 4 1 |, x=0A—-V2 4, 4+2)

(a]
—_
N
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ANNEXE D

METHODES DU GRADIENT CONJUGUE
DE FLETCHER—REEVES ET
POLAK—RIBIERE

Soit f une fonction de R™ dans R, de classe C2. On considére le probléme d’optimisation

sans contraintes

(P)  min f(z)
On suppose que f posséde la propriété de croissance a infini, i.e. f(z) — +oo lorsque || z ||— +oo.
On sait que cela garantit ’existence d’un point stationnaire de f.

Les algorithmes du gradient conjugué de Fletcher—Reeves (1964) et de Polak—Ribiére (1971),
pour resoudre (P), sont des extensions directes de la méthode du gradient conjugué pour les fonc-
tions quadratiques. Ces méthodes sont intéressantes & double titre. D’une part elles ne nécessitent,
toutes les deux, que le stockage de 4 vecteurs de longueur n. D’autre part leur vitesse de conver-
gence est trés supérieure a celle des méthodes du gradient simple. Elles représentent donc un bon
compromis vitesse de convergence / encombrement mémoire.

D.1 L’algorithme de Fletcher—Reeves
Initialisation xq, Vf(x), € > 0 la précision.
k0, dy < =V f(w0)

Repéter
Recherche Linéaire : Trouver ¢, > 0 qui minimise la fonction ¢(t) = f(zy + tdi)

Nouvelle approximation de la solution : zy 1 = x) + txdy

Nouvelle direction de descente :

A1 = =V (k1) + Brdy (D.1)
19w 1P
= TV (02

k—k+1
Jusqu’a || Vf(zy) [IP<e
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Comme on peut le remarquer, on ne garde en mémoire que le point courant xy, les gradients
Vf(xy) et Vf(zre1); et la direction de descente dj,.

D.2 La méthode de Polak—Ribiére

Elle est identique & la méthode de Fletcher—Reeves en tout point sauf pour le calcul du
coefficient ;. La formule (D.2) est remplacée par

Vi (@ren)” (V) = Vi)
[ V@) TP

B = (D.3)

D.3 Remarques sur la convergence

Les deux méthodes appliquées & une fonction quadratique ont un comportement identique
a celui de la méthode du gradient conjugué pour les fonctions quadratiques (voir cours), i.e. une
convergence en n étapes au plus. Appliquées a une fonction non quadratique, les deux méthodes
ont en général un comportement différent.

Comme la convergence en n étapes n’est plus garantie, il se peut que le nombre d’itérations
k dépasse n. Dans ce cas les directions construites ne sont plus linéairement indépendantes dans
R"™. Pour garantir la convergence globale des deux algorithmes, il faut donc les réinitialiser toutes
les n itérations. La réinitialisation se fait en remplacant la formule (D.1) par

div1 ==V f(Trs1)

toutes les n itérations.

D.4 La Recherche Linéaire

A chaque itération k on doit trouver un pas de déplacement ¢, > 0 qui minimise la fonction
o(t) = f(zp + tdy). C'est la recherche linéaire ou minimisation unidimensionnelle. En fait cette
recherche n’a de linéaire que le nom car le probléme correspondant est fortement non linéaire. C’est
la partie la plus importante des deux algorithmes car c’est 1a que la fonction et son gradient sont
le plus souvent évalués.

Il y a plusieurs algorithmes pour déterminer ¢;. Pour le TP nous avons choisi la méthode de
dichotomie qui est 'une des plus simples. On recherche un point qui annule ¢'(¢) dans un intervalle
approprié. Notons que la dérivée de la fonction ¢ est donnée par

¢'(t) = V f(ax + tdy,)" dy.
D’abord on recherche un intervalle [to, t1] tel que
@ (to) <0, ¢ (t1) > 0. (D.4)

Comme ¢a on est sir d’encadrer au moins un minimum de ¢, puisque la fonction est décroissante
4 gauche et croissante & droite de l'intervalle. Comme dj; est une direction de descente, on a deja
que ¢'(0) < 0.

Ensuite, on applique la méthode de dichotomie & ’équation

¢'(t) =0

dans Pintervalle [tg, ¢1]. L’algorithme de dichotomie est le suivant.



D.5. LE TP 95

Initialisation ¢, et t; vérifiant (D.4)
€1 > 0 la précision des calculs.

Tant que ¢t 1-t 0> 2¢;
tm — (to +t1)/2
h— ¢ (tm)
Si h < eq alors STOP : ¢, «— ¢
Sinon Si A > 0 alors t; < (to +t1)/2
Si h < 0 alors tg «— (to +t1)/2

La recherche de lintervalle [ty, t1] peut se faire a I’aide ’algorithme suivant.

Initialisation 0 < §y < 1 fixé, to = 0.
t«— (50

Repéter
Si ¢'(t) < 0 alors tg «— t et t «— 2t
Sinon Si ¢'(t) > 0 alors t1 «— ¢

Jusqu’a (¢/'(t) > 0)

D.5 Le TP

Ecrire un code Fortran pour resoudre les problémes de minisation sans contrainte dans R™
par les méthodes du gradient conjugué de Fletcher—Reeves et de Polak—Ribiére. L’utilisateur devra
avoir le choix de la méthode & utiliser.

La qualité d’un code d’optimisation se juge aussi par le nombre d’évaluations de la fonction
et de son gradient. Pour éviter les évaluations anarchiques de la fonction et de son gradient, il faut
écrire une seule procédure (subroutine) pour calculer la fonction et son gradient. Il faut veiller &
ne pas évaluer la fonction plusieurs fois avec la méme valeur de .

1l faut prévoir des test d’arrét de secours sur le nombre d’itérations et le nombre d’appels &
la procédure qui calule la fonction et son gradient.

On pourra utiliser les fonctions suivantes pour la mise au point du code.

f(x) =100(zs — 23)% + (1 — 21), o = ( 8 > o < i >
f($)=($1+932)2+(2(3:%4—3:%—1)—%)27 xo:( g/e’)’ x*:<8> Oux*:(-@)

Puis testez la robustesse des algorithmes avec

n

fl@) =Y i —21)?, 2@ =(1,1,...,1)7

=2

pour différentes valeurs de n, n = 10, 50, 1000.
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