
De l’élimination du mot clé friend

et de l’utilisation de méthode const

Voilà un petit exemple d’utilisation des méthodes const Reprenons le code que vous avez écrit lors du
TP sur les vecteurs. Voici ici une classe Vecteur un peu plus simple que celle que vous aviez définie (elle
contient un tableau d’entier de taille trois initialisé à [0,1,2]). A cette classe, sont associés deux opérateur :
operator + : qui renvoie la somme de deux vecteurs
operator << : qui affiche le vecteur sur un ostream

Exceptionnellement, la déclaration de la classe et l’implémentation des fonctions sont dans un seul et même fichier
Vecteur.h :
#ifndef VECTEUR H
#define VECTEUR H
#include <iostream>
using namespace std ;
class Vecteur
{

protected :
int tab[3] ;

public :
Vecteur(){ tab[0]=0 ; tab[1]=1 ; tab[2]=2 ;}
friend ostream & operator<< (ostream &,const Vecteur&) ;
friend Vecteur operator+ (const Vecteur&, const Vecteur &) ;

} ;
ostream & operator<< (ostream &o,const Vecteur&v)
{

for(unsigned int i=0 ;i<3 ;++i)
o<<v.tab[i]<<" " ;

cout<<endl ;
return o ;

}
Vecteur operator+(const Vecteur& a, const Vecteur& b)
{

Vecteur c ;
for(unsigned int i=0 ;i<3 ;++i)

c.tab[i]=a.tab[i]+b.tab[i] ;
return c ;

}
#endif

L’utilisation de cette classe se réalise alors avec le fichier main.cpp que voici :
#include "Vecteur.h"
int main(int, char**,char**)
{

Vecteur v,v1,v2 ;
cout<<v<<v1<<v2 ;
v=v1+v2 ;
cout<<v<<v1<<v2 ;
return 0 ;

}

Comme de bien entendu, l’exécution du main nous donne :

0 1 2
0 1 2

1

0 1 2
0 2 4
0 1 2
0 1 2

Si la déclaration des deux opérateurs comme fonctions friend de Vecteur (ce qui permet à ces fonctions
d’accéder directement aux attributs de Vecteur) est bien pratique, elle met à défaut le principe d’encapsulation
cher au concept objet. Je propose donc de retirer les lignes où apparaissent les mots clef friend et de faire en
sorte que le code recompile de nouveau. . .
Première étape :
#ifndef VECTEUR H
#define VECTEUR H
#include <iostream>
using namespace std ;
class Vecteur
{

protected :
int tab[3] ;

public :
Vecteur(){ tab[0]=0 ; tab[1]=1 ; tab[2]=2 ;}
friend ostream & operator<< (ostream &,const Vecteur&) ;
friend Vecteur operator+ (const Vecteur&, const Vecteur &) ;

} ;
ostream & operator<< (ostream &o,const Vecteur&v)
{

for(unsigned int i=0 ;i<3 ;++i)
o<<v.tab[i]<<" " ;

cout<<endl ;
return o ;

}
Vecteur operator+(const Vecteur& a, const Vecteur& b)
{

Vecteur c ;

for(unsigned int i=0 ;i<3 ;++i)
c.tab[i]=a.tab[i]+b.tab[i] ;

return c ;
}
#endif

Dès lors le compilateur râle :

In file included from main.cpp:1:
Vecteur.h: In function ‘std::ostream& operator<<(std::ostream&, const

Vecteur&)’:
Vecteur.h:10: ‘int Vecteur::tab[3]’ is protected
Vecteur.h:18: within this context
Vecteur.h: In function ‘Vecteur operator+(const Vecteur&, const Vecteur&)’:
Vecteur.h:10: ‘int Vecteur::tab[3]’ is protected
Vecteur.h:27: within this context
Vecteur.h:10: ‘int Vecteur::tab[3]’ is protected
Vecteur.h:27: within this context
Vecteur.h:10: ‘int Vecteur::tab[3]’ is protected
Vecteur.h:27: within this context
make: *** [e] Error 1

En effet, maintenant que les opérateurs ne sont plus friend, ils ne peuvent plus accéder librement aux
attributs de Vecteur. Rajoutons alors un opérateur d’indexation à Vecteur et utilisons celui-ci dans l’opérateur
de flux :
#ifndef VECTEUR H
#define VECTEUR H
#include <iostream>
using namespace std ;

2

class Vecteur
{

protected :
int tab[3] ;

public :
Vecteur(){ tab[0]=0 ; tab[1]=1 ; tab[2]=2 ;}
int operator[](unsigned int index)
{

return tab[index] ;
}

} ;
ostream & operator<< (ostream &o,const Vecteur&v)
{

for(unsigned int i=0 ;i<3 ;++i)
o<<v[i]<<" " ;

cout<<endl ;
return o ;

}
Vecteur operator+(const Vecteur& a, const Vecteur& b)
{

Vecteur c ;
for(unsigned int i=0 ;i<3 ;++i)

c.tab[i]=a.tab[i]+b.tab[i] ;
return c ;

}
#endif

Ce qui nous donne à la compilation :

In file included from main.cpp:1:
Vecteur.h: In function ‘std::ostream& operator<<(std::ostream&, const

Vecteur&)’:
Vecteur.h:22: no match for ‘const Vecteur& [unsigned int&]’ operator
Vecteur.h:14: candidates are: int Vecteur::operator[](unsigned int) <near

match>
Vecteur.h: In function ‘Vecteur operator+(const Vecteur&, const Vecteur&)’:
Vecteur.h:10: ‘int Vecteur::tab[3]’ is protected
Vecteur.h:31: within this context
Vecteur.h:10: ‘int Vecteur::tab[3]’ is protected
Vecteur.h:31: within this context
Vecteur.h:10: ‘int Vecteur::tab[3]’ is protected
Vecteur.h:31: within this context
make: *** [e] Error 1

Ce que veut nous signaler le compilateur ici, c’est qu’il ne peut appeler l’opérateur d’indexation sur le Vecteur
qui lui est passé en argument. En effet, dans le prototype, celui-ci est déclaré comme const, c’est à dire qu’il ne
sera pas modifié par la fonction. Cela veut dire aussi qu’il ne doit pas être modifié par les méthodes de Vecteur
utilisées dans l’implémentation de l’opérateur. . .

C’est bien le cas de notre opérateur de flux ! Mais il faut préciser cela au compilateur en déclarant notre
opérateur d’indexation comme étant une méthode const... La nouvelle version de Vecteur.h est alors : (on
notera que l’utilisation de l’opérateur d’indexation a été généralisée à l’opérateur d’addition)
#ifndef VECTEUR H
#define VECTEUR H
#include <iostream>
using namespace std ;
class Vecteur
{

protected :
int tab[3] ;

public :
Vecteur(){ tab[0]=0 ; tab[1]=1 ; tab[2]=2 ;}
int operator[](unsigned int index) const
{

return tab[index] ;
3

}
} ;
ostream & operator<< (ostream &o,const Vecteur&v)
{

for(unsigned int i=0 ;i<3 ;++i)
o<<v[i]<<" " ;

cout<<endl ;
return o ;

}
Vecteur operator+(const Vecteur& a, const Vecteur& b)
{

Vecteur c ;
for(unsigned int i=0 ;i<3 ;++i)

c[i]=a[i]+b[i] ;
return c ;

}
#endif

Ce qui devrait nous donner un comilation réussie :

In file included from main.cpp:1:
Vecteur.h: In function ‘Vecteur operator+(const Vecteur&, const Vecteur&)’:
Vecteur.h:31: non-lvalue in assignment
make: *** [e] Error 1

Et bien non, ce n’est pas fini. Si l’opérateur d’indexation comme nous l’avons défini permet d’accéder à a[i]
et b[i], cet opérateur ne nous permet pas de modifier la valeur de c[i]. . . Pour que cela soit possible il faut
ajouter un autre opérateur d’indexation (dit en écriture alors que le précédent est dit de lecture seule). Rajoutons
cet opérateur et nous obtenons :
#ifndef VECTEUR H
#define VECTEUR H
#include <iostream>
using namespace std ;
class Vecteur
{

protected :
int tab[3] ;

public :
Vecteur(){ tab[0]=0 ; tab[1]=1 ; tab[2]=2 ;}
int operator[](unsigned int index) const
{

return tab[index] ;
}
int & operator[](unsigned int index)
{

return tab[index] ;
}

} ;
ostream & operator<< (ostream &o,const Vecteur&v)
{

for(unsigned int i=0 ;i<3 ;++i)
o<<v[i]<<" " ;

cout<<endl ;
return o ;

}
Vecteur operator+(const Vecteur& a, const Vecteur& b)
{

Vecteur c ;
for(unsigned int i=0 ;i<3 ;++i)

c[i]=a[i]+b[i] ;
return c ;

}
#endif

4

Ce qui compile et nous donne à l’exécution :

0 1 2
0 1 2
0 1 2
0 2 4
0 1 2
0 1 2

5

