Présentation de Valgrind

1. Présentation générale

Valgrind est un outils Open-Source permettant de mettre a jour les problémes de gestion de
mémoire pour des programme Linux-x86. Il détecte les fuites de mémoires pendant 1'exécution du
programme. Il a été¢ développé par Julian Seward.

L'allocation dynamique de conteneurs de stockages pour les données jouent un role
important en C, mais c'est aussi une source de nombreuse erreurs difficiles a trouvées. Libérer un
bloc de donnée deux fois, surcharger le buffer du malloc ou méme encore en perdre une adresse
sont des cas d'erreurs fréquents qui frustrent le programmeur. Trouver ces erreurs et les corriger est
trés difficile car elles se manifestent toutes de la méme fagon a des endroits souvent lointain de leur
cause.

Pour chacune de ces erreurs Valgrind est utile. Valgrind travail directement avec les
exécutables, sans besoin de recompiler, relinker ou de modifier le programme a vérifier. Valgrind
décide si le programme a besoin d'étre modifi¢ pour éviter une fuite de mémoire, et pointe aussi
l'endroit de la "fuite".

Valgrind simule toutes les instructions exécutées par le programme. Pour cette raison
Valgrind trouve les erreurs non seulement dans l'application mais aussi dans toutes les librairies
linkées dynamiquement, ceci incluant les librairies GNU, les librairies des clients X, et méme Qt si
I'on travail avec KDE, etc... Ceci incluse également les librairie, celle GNU C par exemple, qui
peuvent contenir des acces de violation mémoire.

2. Procédure d’installation

Pour installer Valgrind sous un systéme d’exploitation de type Unix, il faut tout d’abord
télécharger la distribution binaire, disponible sur le site http://developer.kde.org/~sewardj/ (une
alternative est http://freshmeat.net/projects/valgrind/). Ensuite, il est nécessaire de compiler le
logiciel en saisissant les commandes suivantes :

$ tar zxvf valgrind-1.0.0.tar.gz

S cd valgrind-1.0.0

$./configure --prefix="/usr/local/valgrind”
S make

$ make install

Valgrind est alors installé dans /usr/local/valgrind. Son exécutable est situé soit dans
/ust/local/bin ou dans /usr/local/valgrind/bin.

3. Utilisation de Valgrind

Le début de la vérification est lancée en plagant simplement le mot valgrind devant la
command de l'exécutable. Par exemple :

$ valgrind 1ls -laF

Valgrind propose une multitude d'options dont nous ne parlerons pas ici pour ne pas
surcharger cette presentation. La sortie présente la sortie habituelle du "ls -laF" avec aussi un
rapport détaillé¢ de la part de Valgrind. Toutes les erreurs liées a la mémoire sont données dans le
rapport.

Comprendre le rapport de Valgrind :
Considérons la sortie fournie par Valgrind suivante :

==1353== Invalid read of size 4

==1353== at 0x80484Fr6: print (valg eg.c:7)

==1353== by 0x8048561: main (valg eg.c:16)

==1353== by 0x4026D177: libc start main
(../sysdeps/generic/libc-start.c :129)

==1353== by 0x80483F1: free@@GLIBC 2.0 (in /home/valg/a.out)

==1353== Address 0x40C9104C is 0 bytes after a block of size 40 alloc'd

==1353== at 0x40046824: malloc (vg clientfuncs.c:100)

==1353== by 0x8048524: main (valg eg.c:12)

==1353== by 0x4026D177: libc start main
(../sysdeps/generic/libc-start.c :129)

==]1353== by 0x80483F1l: free@@GLIBC 2.0 (in /home/valg/a.out)

Ici, 1353, est le numéro du processus qui est suivit. Cette partie du rapport d'erreurs dit
qu'une erreur de lecture a lieu a la ligne 7, dans la fonction print. La fonction print est appellée par
la foncytion main, et toutes deux sont dans le fichier "valg eg.c". La fonction main est appelée par
la fonction __ libc_start main a la ligne 129 dans le fichier ../sysdep/generic/libc-start.c, elle-méme
appelée par free@@GLIBC 2.0 dans le fichier /home/valg/a.out. Des détails similaires sont
données pour I'appel de la fonction malloc.

Un type d'erreur avec un Exemple :

Valgrind ne peut réellement détecter deux types d'erreurs : 1'utilisation illégale d'adresses et
l'utilisation de valeures non définies. Néanmoins c'est suffissant pour trouver de nombreuses
sources d'erreurs dans un programme.

#include <stdlib.h>
int main()
{ .
nt p, t;
if (p==>35) /*Source de 1"erreur™®/
t=ptl;
return 0;

Ici la valeur de p n'est pas initialisée, donc p peut contenir des valeurs aléatoires provenant de
mémoire non effacée. Donc une erreur peut se produire lorsque la condition est vérifiée. Une
variable non initialisée peut devenir source de probléme dans deux cas :

e Jorsqu'elle est utilisée pour déterminer quelle route conditionnelle emprunter.
e Lorsqu'elle est utilisée pour générer une adresse (comme l'appel tableau[p] avec un p non
initialisé).

Exemple d'une fuite de mémoire :
Soit le programme suivant :

#include <stdlib.h>
int main()
{
int *p, 1;
p = malloc(5*sizeof(int));
for(i=0;1 < 5;i++)
plil = i;
return 0;

Voici la sortie fournie par Valgrind :

==1048== LEAK SUMMARY:

==1048== definitely lost: 20 bytes in 1 blocks.
==1048== possibly lost: 0 bytes in 0 blocks.
==1048== still reachable: 0 bytes in 0 blocks.

Dans le programme ci-dessus p contient I'adresse d'un block de 20 byte. Mais ce bloc n'est
pas libéré par le programme. Donc le pointeur pour ce bloc de 20 byte est perdu a jamais. C'est une
fuite de mémoire. On peut alors obtenir le résumé sur les fuites en utilisant 'option de Valgrind :
--leak-check=yes.

Comment supprimer les erreurs :

Valgrind détecte de nombreuses erreurs dans de multiples programme qui sont pré-installés
dans un systeme GNU/Linux. Il n'est pas facile de résoudre de tels problémes mais il faut le faire.
Alors Valgrind peut en faire la liste dans un fichier de supression .supp. Le format de ces fichier est
décrit ci-dessous.

{
Nom de l'erreure
Type
fun : nom de la fonction qui contient l'erreur
fun : nom de la fonction qui appelle la fonction contenant I'erreur
}

On obtient ces fichier avec la commande :
valgrind --suppressions=chemin_du_fichier.supp le nom du prog

4. Limitations de Valgrind

Aucun logiciel n'est libre de limitations. C'est la méme chose dans le cas de Valgrind, méme si il
fonctionne bien. Voici une liste des limitations de Valgrind :
e Les programmes tournent 25 a 50 fois moins vite
e Augmentation de la consomation de mémoire.
e Les codes optimisés de maniere aggressive (-O1, -O2 par exemple) peuvent certaines
fois abuser Valgrind.
e Valgrind repose sur des librairie linkées dynamiquement.
e Valgrind ne fonctionne qu'avec un environement Linux x86 (kernel 2.2.X ou 2.4.X)
ainsi qu'avec la librairie Glibc 2.1.X ou 2.2.X.

