
Complément de C++ Complément de C++
ISIMA2ISIMA2

Laurent B. Garcia
David R.C. Hill

Introduction à la librairie standard Introduction à la librairie standard
du C++du C++

2

EvolutionEvolution de la programmationde la programmation

�Le but de la manipulation est d'écrire un
programme qui affichera "HELLO

BASIC au Lycée

10 PRINT "HELLO WORLD"

20 END

3

En PREPA, DEUG, BTS ou DUTEn PREPA, DEUG, BTS ou DUT

�Mon bon Blaise ☺

program HELLO(input, output)

begin

writeln('HELLO WORLD')

end.

4

En 1ère année En 1ère année d’Ecole d’Ecole d’Ingénieur…d’Ingénieur…

�LISP, Scheme et Cie…

(defun HELLO

(print

(cons 'HELLO (list 'WORLD))

)

).

5

ZZ1 Étudiant expérimenté…ZZ1 Étudiant expérimenté…
�C la vie…

#include <stdio.h>

int main(int argc, char ** argv)

{

char *message[] = {"HELLO ", "WORLD"};

int i;

for(i = 0; i < 2; ++i)

printf("%s", message[i]);

printf("\n");

}

6

C++ en deuxième annéeC++ en deuxième année

�Étudiant très expérimenté

#include <iostream.h>
#include <string.h>

class string
{

private:

int size;
char *ptr;

public:

string() : size(0), ptr(new char('\0')) {}
string(const string &s) : size(s.size)
{

ptr = new char[size + 1];
strcpy(ptr, s.ptr);

}

~string()
{

delete [] ptr;
}

friend ostream &operator <<(ostream &, const string &);

string &operator=(const char *);

};

7

La suite…La suite…
ostream &operator<<(ostream &stream, const string &s)
{

return(stream << s.ptr);
}

string & string::operator=(const char *chrs)
{

if (this != &chrs)
{

delete [] ptr;
size = strlen(chrs);
ptr = new char[size + 1];
strcpy(ptr, chrs);

}

return(*this);
}

// et enfin…

int main(int, char **)
{

string str;

str = "HELLO WORLD";
cout << str << endl;

return(0);
}

8

GenèseGenèse de de ls ls STLSTL

�Demande de la communauté C++
�Pas de bibliothèque de classes conteneur

¾Chacun développe sa bibliothèque dans son coin
¾Réutilisabilité nulle
¾Apprentissage nécessaire à chaque fois
¾Fiabilité douteuse

�Pas de classe chaîne de caractères
¾Mêmes conséquences

�L’existant
�Bibliothèque ADA
�Non orientée objet

9

Résultat : Librairie Standard du C++ ex STLRésultat : Librairie Standard du C++ ex STL

�Contenu :
�Classes

¾string
¾conteneurs

† de base (vector, deque, list)
† spécialisés (stack, queue, priority_queue)
† associatifs (set, map)

¾ iostream revu et corrigé
¾utilitaires

�fonctions
¾algorithmes qui travaillent sur les conteneurs
¾génériques gràce à la notion d’itérateur

10

Notion d’itérateurNotion d’itérateur

�Définition :
Balise localisant un emplacement dans une Balise localisant un emplacement dans une

collectioncollection
�Vous en utilisez déja : pointeurs dans tableau

int tableau[10];
int niveau=10;
int *courant=tableau;
int *fin=tableau+niveau;
while (courant != fin)
{

// action sur *courant, ex
cout << *courant << endl;
++courant;

}

Vous comprennez ce code ?
Alors, vous savez utiliser

la STL

11

Notion d’itérateur BISNotion d’itérateur BIS
�Tout itérateur est isomorphe à un pointeur

dans un tableau
�Même code avec STL :

#include <vector>
using namespace std;
typedef vector<int> VecInt;

VecInt v(10);
VecInt::iterator courant=v.begin();
VecInt::iterator fin=v.end();

while (courant != fin)
{

cout << *courant << endl;
++ courant;

}

12

Dissection du code précédentDissection du code précédent
#include <vector>
using namespace std;

�Notion de namespace
�Elimine les collisions de noms de classes
�Ex 2 classes Matrice dans 2 bibliothèques

�Avec namespace : préfixe de nommage
�Ex : stats::Matrice ou pde::Matrice
�Suppression du préfixe :

¾Classe/fonction isolée: using stats::Matrice;
¾Tout l’espace : using namespace stats;

�Particularité : pas de .h dans les headers
de la librairie standard du C++

13

Dissection du code (le retour)Dissection du code (le retour)
typedef vector<int> VecInt;

�Généricité : tous les types sont template
�Les itérateurs sont en sous classe des

conteneurs
�Souvent :

typedef VectIntIt VecInt::iterator;

14

Les classes fondamentalesLes classes fondamentales

La classe stringLa classe string
�Encore une classe template ... sur le type

char de base !
�Supporte toutes les operations de base

avec les opérateurs classiques
�Conversion vers et depuis char *

15

Les conteneurs fondamentauxLes conteneurs fondamentaux

�Trois classes de base
�vector

¾Modélise un vecteur à croissance dynamique
¾Operations en bout de vecteur et acces direct en

O(1) amorti

�deque
¾Liste spécialisée dans les opérations aux 2 bouts
¾Acces direct en O(log (n)) aux 2 bouts en O(1)

� list
¾Liste doublement chaîne circulaire classique
¾Toute insertion / deletion en O(1)
¾Accès directe en O(n)

16

Les specialisées !Les specialisées !

�Basées sur une collection de base mais
avec operations spécifiques

�Collections :
�stack

¾objet pile (pop, push et top)

�queue
¾objet file (pop, push, front et back)

�priority_queue
¾ file à propriété, implémentée sous la forme d’un

tax minimax
¾pop, push, top

17

Les conteneurs associatifsLes conteneurs associatifs

�Utilisent une clef (paire, valeur)
�Deux types et 2 catégories :
�set (clef et valeur confondues)
�map (clef et valeur distinctes)
�set et map : une seule valeur par clef
�multiset et multimap : plusieurs valeurs

autorisées par clef

18

Méthodes les plus courantesMéthodes les plus courantes
Méthode Action

iterator begin() Premier élément du vecteur

iterator end() Après le dernier élément du vecteur

int size() Nb d’éléments présents dans le vecteur

int capacity() Capacité d’accueil actuelle du vecteur

void push_back(const T& élem) Ajoute un élément au bout du vecteur

void pop_back() Retire l’élément au bout du vecteur

void push_front(const T& elem) Ajoute un élément au début du vecteur

void pop_front() Retire l’élément de début du vecteur

const T& front() Ref sur l’élément en tête de vecteur

const T& back() Ref sur l’élément en fin de vecteur

empty() True si vecteur vide

T& operator[](int idx) Ref sur l’élément d’index idx

const T& operator[] (int i) const Idem mais en version constante

19

Opérations avec itérateursOpérations avec itérateurs

Méthode Action

void erase (iterator it) Supprime l’élément spécifié

void erase (iterator debut,
 iterator fin)

Supprime les éléments [debut, fin[

void insert(iterator place,
 const T& elem)

Insère elem à l’emplacement place

void insert(iterator place,
 iterator debut,
 iterator fin)

Insère à la position place, les éléments
de [debut, fin[

20

Les algorithmesLes algorithmes

�Ensemble d’opérations communes
�Copie d’éléments entre conteneurs

¾Ecrasement
¾Insertion

�Transfert d’éléments entre conteneurs
�Recherche d’éléments

�Fonctions plutôt que méthodes
�STL initialement non orientée objet
�Utilise abondamment les itérateurs

21

Algorithmes courantsAlgorithmes courants

�Copie d’éléments
copy (debut, fin, destination);

�Attention ! remplace les éléments !
�Pour ajouter des éléments :
copy(debut, fin, inserter(destination));

�Recherche d’éléments
place = find (debut, fin, element);

�Affichage d’une collection
ostream_iterator<Type> oi(cout, “ ”);

copy(debut, fin, oi);

22

Aller plus loin avec les bibliothèques C++Aller plus loin avec les bibliothèques C++

