TP n° 1 de C++ - 2 séances

Partie 1 : ++C

Ecrire un petit programme qui affiche « hello wosldur la console avamut défini
dans I'entéte iostream. Utiliser le compilateur det-non gcc).

Utiliser le prototype de main() incluant les parame classiques pour récupérer les
arguments de la ligne de commande. Compiler aweopdons —Wall —ansi —pedantic
-Wextra pour afficher tous les warnings et s’assqte I'on n’est pas prétentieux par
rapport au standard ANSI C++.

Enlever les deux warnings en utilisant pesamétres muetsdu C++.

Ecrire une méthode swap() qui permet d’échangemotgenu de deux variables de
type entier en utilisant le passage de paramétragr@asse. Tester et valider dans le
main().

Ecrire une autre méthode swap() qui permet d’éabralegcontenu de deux variables
entieres passégar référence... Remarquez que la fonction peut porter le méme nom
grace a lsurcharge Tester et valider dans le main().

Ecrire une derniere fonction swap() permettant lbéger par référence deux
variables réelles. Tester et valider dans le maid() verra (beaucoup) plus tard un
moyen d’écrire une telle fonction d’échange pout tgype d’opérandes.

Partie 2 : POO

Cette partie permet de tester les concepts basitpkesPOO en C++

Ecrire une classe méMere sans attribut. Instancier un objet dans le main().

Ecrire le constructeur par défaut de la classecamstructeur affiche a I'écran un
message.

Doter la classe d'un attribut entiat, modifier le constructeur pour que la valedr
soit donnée en parametre et que le constructeichaffl. Instancier deux objets avec
des valeurs différentes.

Doter le constructeur d’'une valeur par défaut aDgxemple.

Vérifier la portée ded (utilisation directe dans le main) en le rendargcgssivement
public, protected et private.

Pour respecter I'encapsulation, plader en private/protected suivant le dosage
d’encapsulation que vous souhaitez et ajouter getier » et un « setter ».

Ajouter un compteur d’instanceompteur (attribut de classe) initialisé a 0 et
incrémenté a chaque nouvelle création d'instancifiér que le comportement est
conforme a celui attendu.

Ecrire une méthode de classe qui renvoie la valeurompteur pour appliquer le
principe de I'encapsulation.

Ecrire une nouvelle classéille qui hérite deMere.

Vérifier qu'un objet de classe Fille permet d'aceédaux méthodes définies
précédemment.

Doter les classes d’une méthode whoami(), qui ladfie nom de la classe. Vérifier
que I'affichage est correct.

Page 1/4

Partie 3 : Constructeurs et destructeurs

Voici un petit programme. Le tester et étudier uél @ffiche exactement a I'écran. Repérer
les lignes qui interviennent a chaque fois.

#include <iostream>

class A
public:
A(void) { std::cout << "A()" << std::endl;
A(const A &) { std::cout << "A(A)" << std::e ndl; }
~A(void) { std::cout << "~A()" << std::endl; }

class B : public A
{

public:
B(void) { std::cout << "B()" << std::endl; }
B(const B &) { std::cout << "B(B)" << std::e ndl; }

~B(void) { std::cout << "~B()" << std::endl;

int main(int, char **)

Aal,;

B bl;

A a2(al);
Aa3=al;
B b2(b1);
A a3(b1);
Ata[5];

B th[3];

std::cout << "Ouf ! Mais est-ce fini ?! 7" <<s td::endl;

return O;

Partie 4 : Héritage multiple et en diamant

Donner la trace du programme suivant :

#include<iostream.h> // on peut aussi

class D : public B, public C
using namespace std; / facilité {

public:
class A D() { cout << "D *;}
{ _ ~D() { cout << "~D "}
public: +

A() { cout <<"A™;}
~A() { cout << "~A";} int main(int, char**)

s

Dd;
class B : public A
{ cout << "c’est fini I";
public:
B(){cout<<"B";} return 0 ;

~B() { cout <<"~B "} }

class C : public A {
public:
C() { cout <<"C "}
~C() { cout << "~C "}
¥

Que faut-il faire pour que le constructeur de A appelé un nombre minimal de fois ?

Page 2/4

Partie 5 (Obligation : prévoir 2 fichiers pour chaque classe)

1) Concevez une classe Voiture caractérisée par, aimonin, sa marque, sa couleur, sa
puissance (din), son régime moteur maximal (trsym#a consommation (urbaine, et
extra-urbaine au 100 km), la capacité de son résene contenu du réservoir et son
émission de C02 (en g/km).

Définissez des méthodes pour accéder aux attrdiytsoposez quelques méthodes pour :
faire le plein, faire rouler une voiture sur unetdince donnée et sur un type de parcours
(ville, route de campagne, autoroute).

2) Prévoir un programme principal pour instancier jgluss voitures : saisir (et donc préciser
les attributs de chaque voiture) et faire rouler\eitures pendant un nombre donné de
kilométres (ville et zone urbaine), puis afficherqu'il restera dans leur réservoir en fin de
programme ainsi que la quantité de CO2 émiseg@sdmble de ces voitures.

3) Dans le cas de votre programme sur les voitureslleggerait la solution pour obtenir
simplement le nombre de voitures créées (et poumédenoriser). Implémenter votre
solution.

4) Réutilisation de classes. Considérons une extemgore programme : ajouter une classe
Parking que vous concevrez et ou vous stockerexoisres. Considérez une allocation
statique et une allocation dynamique pour stocksrvbitures. Reconsidérez la question
précédente sachant que vous disposez de la cladgad? Dans le programme principal,
stocker les voitures créées dans le parking lordede création, puis lister toutes les
voitures présentes dans ce parking avec leursipaing attributs.

Partie 6 — Prévoir 5 fichiers: 2 pour chaque clags plus un pour le programme
principal. Compilation séparée avec un petit makefé (suivre 'exemple du poly).

Envoi de messages (appel de méthodes) entre 2eslasset exercice suppose que l'on
consulte les conseils de codage en C++ du polycopié

Décrire deux classes et B. La classeA possede un entier i, et la clagein entier j. Ces
deux classes ont chacune une méthodgesc » et une méthode send » qui leur permet
d’envoyer un message a un objet de l'autre clasaeméthode send » de la classé\
accepte un pointeur sur un objet de claBset réciproquement. La méthodesxec » de
chaque classe accepte un entier en parameétreugt dovaleur de cet entier aux attributs i ou
j selon la classe de I'objet concer® qu B). L'exécution du corps d'une méthodeend »
lance un «xec » sur I'objetdistant avec une constante de votre choix. Aungi.send(&B)
active la méthode send » de la classéd qui lance la méthodexec de la classeB.
Indépendamment des imbrications de méthodes, lediude mettre en évidence I'utilisation
systématique des déclarations anticipatives dansrites des classes communicantes.

Page 3/4

OPTIONNEL :
Pour les informaticiens qui s’ennuient trop avec Ie 5 parties précédentes...
Adaptation et réutilisation du code sur les voisure

Considérons une classe Paddock qui posséde un lelesdenvéhicules de type formule 1,
mais radiocommandée et sans boite de vitesse. €hathicule précise de maniere tabulée
(tous les 1000 tr/min) la vitesse obtenue en fonctiu régime moteur. (Ex : 1000 — 10 km/h

; 2000 — 40 km/ h; ... 14 000 — 350 km/h). On co@sgdnon plus une consommation pour
100km mais une consommation en nombre de litrébeture. Considérons également une
classe Circuit qui comporte un nom et une distatenétres ainsi que ses caractéristiques
sous forme tabulée. Le tableau donne des coupleypdtu: (distance en metres, régime
maximal), la somme des distances de tous les cougnane la distance totale du circuit.
Considérons maintenant une classe Course qui sinmée course avec l'ensemble des
véhicules présents dans la classe Paddock pendantlurée fixe (en minutes) et sur un
circuit donné, en fonction de leurs performancebagoe véhicule présentant des
caractéristiques différentes). Le programme prizlcgfectuera une compétition sur au moins
2 circuits avec au moins 2 véhicules différentsu¥@rendrez les choix de conception qui
vous sembleront pertinents (prise en compte desgsad'essence, classement des véhicules,
évolution du temps, etc...)

Page 4/4

