TP n° 2 de C++ - Forme canonique de Coplien

Dans ce TP vous devez implémenter une classe chaine de caractéeres et étudier les problemes
vus en TD et signalés dans I'ouvrage « Effective C++ » de Scott Meyers.

1)

String

- _size :entier
- _pData : tableau de char

+ String()

+ String(char * inCString)

+ String(String inString)

+~String()

+ opérateur d'affectation

+ opérateur d'extraction de caractere
+ opérateur d'affichage

Constructeur de base et destructeur

Ecrire une classe String qui a deux attributs : un entier _size et un pointeur sur un
caractére _pData. (_size est la taille du tableau _pData). Le schéma UML ci-dessus
précise avec les -* que les attributs sont privés et que les méthodes avec ‘+ sont
publiques.

Ecrire un constructeur par défaut sans arguments qui initialise les attributs a 0 et
(void *) 0 pour le pointeur (les nouveaux codes C++ vont bientot utiliser ptrnull.
Ecrire un constructeur qui prend en parameétre une chaine de type langage C (char *)
inCString, qui alloue correctement pData et qui copie inCString dans _pData. La
fonction strcpy() se trouve dans le fichier d'entéte <cstring>.

Ecrire une fonction main() qui instancie un objet s1 de type String avec une valeur
pour tester le constructeur avec argument.

Vérifier avec valgrind qu'il y a bien une fuite mémoire

Ajouter a la classe String un destructeur qui rend la mémoire allouée.

Vérifier avec le logiciel valgrind que vous n’avez plus de problémes.

Constructeur de copie

Modifier le programme principal pour gu’il ne déclare tout d’abord gu’une chaine sl
de taille 10 puis qui déclare et initialise une chaine s2 a partir de s1 sur la méme ligne
(String s2 =s1). Quel sera le probléme ? Vérifier avec Valgrind.

Corriger le probleme en proposant un constructeur de copie et prévoir une ligne dans
le constructeur de copie pour afficher sur la sortie standard "Constructeur de copie
appelé"

Ecrire une méthode toScreen() qui affiche la chaine sur la sortie standard (std ::cout)
Ecrire une fonction displayByValue() qui prend une instance de String en parametre
et qui appelle la méthode afficher() de la chaine en parameétres.

Page 1/4




Ecrire une autre fonction displayByReference() qui prend une référence sur une
chaine et qui fait la méme chose.

Tester I'appel de ces fonctions et vérifier que le constructeur de copie est bien appelé
lors d'un passage de paramétre par valeur.

3) Surcharge de I'opérateur d’affectation

Proposer maintenant un constructeur qui accepte en entrée une taille — inSize et qui
effectue l'initialisation des attributs (allocation dynamique a la bonne taille pour
_pData). Dans le programme principal, créer 2 instances s1 et s2 de taille 10 et 20
puis affecter s2 a s1.

Exécuter le programme, noter le message d'erreur puis vérifier avec valgrind.
Corriger l'erreur en proposant un opérateur d’affectation, vérifier avec valgrind.
L'opérateur prend en parametre une référence sur un objet constant et renvoie une
référence ("*this") pour le chainage d’affectations s1 =s2 =s3.

Bien vérifier que le cas s1 = s1 ne puisse provoquer d’erreur

4) Surcharge d’opérateurs(<<, [] et +)

En utilisant les éléments de syntaxe du polycopié :

Notes:
v

v

Proposer une surcharge de l'opérateur <<. Cet opérateur (une fonction) prend deux
références en parameétres : un flux et une chaine et renvoie le flux pour rendre le
chainage possible. Vérifier par un std::cout << myString; ce qu’il se passe réellement
(la référence sur String doit étre constante — au besoin modifier et compiler). Vous
aurez peut étre besoin d’ajouter un accesseur sur _pTab ou alors d’utiliser le principe
des fonctions amies.

Ajouter un opérateur [] permettant la modification d’un élément de la chaine.

Tester l'implémentation sur une de vos instances en modifiant la valeur d’un
caractere.

Essayer de modifier I'implémentation de I'opérateur << pour qu’il affiche chaque
caractere de la chaine ligne a ligne a I'aide de I'opérateur précédemment défini.

Ex : Pour la chaine « Toto », on aura I'affichage suivant :

«T

o

t

o»

Noter le message d’erreur a la compilation.

Pour palier cette erreur, ajouter un nouvel opérateur [] constant (méthode
constante) pour accéder a un caractére de la chaine en lecture seule.

Ajouter un opérateur de concaténation de chaines en utilisant le symbole + de
maniéere naturelle.

Utiliser le mot clé const sur toutes les méthodes qui ne changent pas I'état de I'objet
courant.
std::cout est un objet de type std::ostream (défini dans I'entéte <ostream>)

Page 2/4



Page 3/4



Pour ceux qui s’ennuient :

1)

DoubleVector

- _size :entier
- _pData : tableau de Double

+ DoubleVector()

+ DoubleVector (int inSize)

+ DoubleVector(double * inDArray)

+ DoubleVector(DoubleVector & inDVector)
+~DoubleVector()

+ opérateur d'affectation

+ opérateurs d'indexation []

+ opérateur d'affichage avec flux <<

+ opérateur d’addition

Ecrire le code C++ d'une classe DoubleVector de réels double précision sur le
modele de la classe String. Identifier les attributs et les méthodes de base pour
une telle classe. Notamment, pour ce vecteur on prévoit I'écriture d’un
constructeur de copie, d’'un opérateur d’affectation, d’un opérateur d’addition,
d’'un opérateur d’indexation et de flux. Réaliser I'implémentation dans deux
fichiers : un fichier entéte et un fichier d’'implémentation. Ecrire le corps de la
fonction main dans un fichier séparé. Tester I'option —-MM du compilateur g++
(g++ -MM *.cpp) puis proposer un makefile. Tester dans le programme principal
les différentes méthodes du DoubleVector une a une. Prenez le temps de les

développer et de les tester au fur et a mesure.

Page 4/4



