
TP n° 5 de C++

Liste chaînée dynamique en C++ - notion élémentaire d’itérateur
Généricité sur une structure de donnée dynamique

1) Ecrire dans les mêmes fichiers (hpp et cpp) le code C++ pour 3 classes : Cellule (Cell),

Liste (List) et un itérateur de liste (ItList). Ces classes ne seront pas implémentées
sous forme de classe imbriquée mais on considère que la classe Cell a pour amie la
classe List et la classe ItList (à la différence de la STL qui imbrique les classes –
concept de « nested classes » qui n’est pas présent dans les concepts objets).

La cellule « Cell » possède un attribut de type entier, et un pointeur sur la cellule
suivante (_next) (on considère une liste simplement chaînée).

La classe « List » possède comme attribut une tête (_first) et une fin de liste (_last).
La fin de liste pointe sur le dernier élément de la liste (_firt = _last = NULL quand la
liste est vide).

Vous implémenterez des méthodes telles que celles proposées dans la STL (Standard
Template Library) pour l’ajout/suppression d’un élément, la recherche d’un élément,
l’affichage de la liste,... Cherchez les prototypes proposés par la STL pour push_back,
push_front, pop_front, empty, clear, remove, … faites votre choix, implémentez les et
testez les.

La classe itérateur de liste (ItList) comporte un pointeur sur une liste (_myList) ainsi
qu’un pointeur sur une cellule courante (_cellPtr). Vous proposerez des surcharges
pour l’opérateur d’affectation =, pour l’opérateur de déréférencement * (qui donne
l’objet pointé par l’itérateur), les opérateurs ++ (pré et postfixés), et les opérateurs
de comparaison == et != .

La classe itérateur vous permet d’ajouter une méthodes à la classe liste – begin()
pour retourner un itérateur sur le début de la liste.

Coder et tester dans un programme principal les classes une à une en proposant les
constructeurs que vous jugerez utiles.

2) Tester dans le programme principal deux instances d’itérateurs référant la même

liste pour faire, par exemple, la comparaison d’éléments 2 à 2 au sein de cette liste et
le parcours d’une liste dans le but d’afficher ses éléments un à un.

3) Coder ce patron de Liste de manière générique avec la notion de template.

