
TP n° 6 de C++

Introduction à la Standard Template Library (STL)
Étude d’un conteneur séquentiel et d’un conteneur associatif

Etude de foncteurs élémentaires

Consigne générale : Tout au long du TP, le but est d’employer au maximum les
algorithmes et conteneurs proposés par la STL. Conservez un navigateur ouvert sur
une des documentations de référence pour vous aider.

 http://www.sgi.com/tech/stl/
 http://www.cplusplus.com/reference/

Partie 1 : Dictionnaire

Vous implémenterez dans cet exercice une classe représentant un dictionnaire de manière
simplifiée. Le diagramme de classe suivant vous donne la structure de l’application :

+ajouterMot()
+supprimerMot()
+getNbElements() : int
+getNbElements(char) : int
+rechercherMots(const std::string &) : ListeMots

Dictionnaire

-std::map<char, ListeMots>1

*

+ajouterMot()
+supprimerMot()
+insert(ListeMots::iterator &, ListeMots::iterator &)
+getNbElements() : int
+begin() : iterator
+end() : iterator

ListeMots

-std::list<string>

1 *

std::string

1. Implémentez en premier lieu la classe ListeMots, il s’agit d’une encapsulation de la
classe std::list<std::string> de la STL. Les méthodes ne dépasseront donc pas une à
deux lignes de code.

Consignes :

 La classe ListeMots utilise l’algorithme std ::copy pour surcharger l’opérateur de
flux (operator<<).

 Les instances de la classe ListeMots sont triées après chaque insertion.

http://www.sgi.com/tech/stl/
http://www.cplusplus.com/reference/

 Vous veillerez à définir des itérateurs sur la classe ListeMots en réutilisant ceux
fournis dans la classe std::list de la STL (une ligne).

2. La classe Dictionnaire est composée d’une instance de std::map<char, ListeMots>. Le

premier champ est la clé, il s’agit de la première lettre d’un mot. La valeur qui lui est
associée est une liste de mots (instance de ListeMots) qui stocke par ordre
alphabétique tous les mots commençant par la dite lettre.

Consignes :

 Implémentez les méthodes de base telles que ajouterMot ou supprimerMot.

 On distingue deux méthodes comptant le nombre d’éléments : l’une renvoie le
nombre de mots commençant par une lettre particulière, l’autre renvoie le
nombre de mots contenus dans le dictionnaire.

 La méthode rechercherMots, renvoie la liste de tous les mots commençant par
le motif qu’on lui passe en paramètre. L’une des méthodes compare de la classe
std::string vous aidera à fournir cette fonctionnalité.

3. Vérifiez à présent le bon fonctionnement de votre dictionnaire :

 Testez la recherche d’un mot qui n’existe pas.

 Vérifiez que vous avez compris la gestion d’une map en proposant les fonctions
nécessaires pour utiliser cette surcharge :

std::ostream & operator<< (std ::ostream& os, const Dictionnaire& d);

Cet opérateur devra obligatoirement utiliser l’algorithme std ::copy !

Partie 2 : Les Foncteurs

Le but de cette partie est de proposer une initiation aux foncteurs.

Foncteurs de base

1 - En vous inspirant de ce que vous avez vu en cours avec la génération des nombres pairs,
proposez un foncteur Rand_0_100 qui génère des nombres aléatoires entre 0 et 100.

Utiliser la fonction std::generate pour peupler un vecteur.

Proposer une autre solution à l’aide de la fonction std::generate_n et d’un back_inserter afin
d’éviter l’initialisation inutile de tous les éléments du vecteur.

Utiliser la fonction std::accumulate pour calculer facilement la moyenne de l’échantillon.

2 - Généraliser maintenant le foncteur pour qu’il génère des nombres aléatoires entre deux
valeurs passées en paramètre du foncteur.

3 - Nous désirons maintenant afficher la liste des nombres dits de « Fibonacci »
(http://fr.wikipedia.org/wiki/Suite_de_Fibonacci). La valeur du nième élément est égale à la
somme des deux éléments précédent : un = un-1 + un-2 avec u0 = 0 et u1 = 1.
Pour cela, vous devrez créer un foncteur permettant de sauvegarder l’état de manière à ce
qu’à chaque appel, un nouveau nombre de Fibonacci soit généré.

L’affichage sera réalisé à l’aide de la fonction std::copy et d’un ostream_iterator.

Pour aller plus loin : utilisation de foncteurs avec des conteneurs

4 - Créer un foncteur permettant de réaliser le tri sur un vecteur de string
(std::vector< std::string >) à l’aide de la fonction std::sort en ne comparant pas l’ensemble de
la chaîne mais seulement à partir du second caractère (on supposera que le vecteur contient
uniquement des chaînes d’au moins deux caractères). Tester votre foncteur avec un jeu
d’essai simple.

5 - Créer un dernier foncteur permettant, à l’aide de la fonction std::for_each, de mettre en
majuscule l’ensemble des chaînes de caractères contenu dans un vecteur de string. Tester
votre foncteur.

http://fr.wikipedia.org/wiki/Suite_de_Fibonacci

