TP n° 6 de C++

Introduction a la Standard Template Library (STL)
Etude d’un conteneur séquentiel et d’'un conteneur associatif
Etude de foncteurs élémentaires

Consigne générale : Tout au long du TP, le but est d’employer au maximum les
algorithmes et conteneurs proposés par la STL. Conservez un navigateur ouvert sur
une des documentations de référence pour vous aider.

http://www.sgi.com/tech/stl/
http://www.cplusplus.com/reference/

Partie 1 : Dictionnaire

Vous implémenterez dans cet exercice une classe représentant un dictionnaire de maniére
simplifiée. Le diagramme de classe suivant vous donne la structure de I'application :

Dictionnaire

+ajouterMot()

+supprimerMot()

+getNbElements() : int

+getNbElements(char) : int
+rechercherMots(const std::string &) : ListeMots

1 -std::map<char, ListeMots>

%

ListeMots
+ajouterMot() -std::list<string>
+supprimerMot() -
+insert(ListeMots::iterator &, ListeMots::iterator &) < std::string
+getNbElements() : int 1 *

+begin() : iterator
+end() : iterator

1. Implémentez en premier lieu la classe ListeMots, il s’agit d’une encapsulation de la
classe std::list<std::string> de la STL. Les méthodes ne dépasseront donc pas une a
deux lignes de code.

Consignes :
e La classe ListeMots utilise I'algorithme std ::copy pour surcharger 'opérateur de
flux (operator<<).

e Lesinstances de la classe ListeMots sont triées aprés chaque insertion.



http://www.sgi.com/tech/stl/
http://www.cplusplus.com/reference/

e Vous veillerez a définir des itérateurs sur la classe ListeMots en réutilisant ceux
fournis dans la classe std::list de la STL (une ligne).

2. La classe Dictionnaire est composée d’une instance de std::map<char, ListeMots>. Le
premier champ est la clé, il s’agit de la premiere lettre d’un mot. La valeur qui lui est
associée est une liste de mots (instance de ListeMots) qui stocke par ordre
alphabétique tous les mots commencgant par la dite lettre.

Consignes :

e Implémentez les méthodes de base telles que ajouterMot ou supprimerMot.

e On distingue deux méthodes comptant le nombre d’éléments : 'une renvoie le
nombre de mots commencant par une lettre particuliere, I'autre renvoie le
nombre de mots contenus dans le dictionnaire.

e La méthode rechercherMots, renvoie la liste de tous les mots commengant par
le motif qu’on lui passe en parametre. L'une des méthodes compare de la classe
std::string vous aidera a fournir cette fonctionnalité.

3. Vérifiez a présent le bon fonctionnement de votre dictionnaire :
e Testez la recherche d’'un mot qui n’existe pas.

e Vérifiez que vous avez compris la gestion d’une map en proposant les fonctions
nécessaires pour utiliser cette surcharge :

std::ostream & operator<< (std ::ostream& os, const Dictionnaireé& d);

Cet opérateur devra obligatoirement utiliser I’algorithme std ::copy !

Partie 2 : Les Foncteurs
Le but de cette partie est de proposer une initiation aux foncteurs.
Foncteurs de base

1 - En vous inspirant de ce que vous avez vu en cours avec la génération des nombres pairs,
proposez un foncteur Rand_0_100 qui généere des nombres aléatoires entre 0 et 100.

Utiliser la fonction std::generate pour peupler un vecteur.

Proposer une autre solution a I'aide de la fonction std::generate_n et d’un back_inserter afin
d’éviter l'initialisation inutile de tous les éléments du vecteur.

Utiliser la fonction std::accumulate pour calculer facilement la moyenne de I’échantillon.



2 - Généraliser maintenant le foncteur pour qu’il génére des nombres aléatoires entre deux
valeurs passées en parametre du foncteur.

3 - Nous désirons maintenant afficher la liste des nombres dits de « Fibonacci »
(http://fr.wikipedia.org/wiki/Suite de Fibonacci). La valeur du n*™® élément est égale a la
somme des deux éléments précédent : u, = unq + Uy avec up =0 et u; = 1.

Pour cela, vous devrez créer un foncteur permettant de sauvegarder |'état de maniéere a ce
gu’a chaque appel, un nouveau nombre de Fibonacci soit généré.

L'affichage sera réalisé a I’aide de la fonction std::copy et d’un ostream_iterator.
Pour aller plus loin : utilisation de foncteurs avec des conteneurs

4 - Créer un foncteur permettant de réaliser le tri sur un vecteur de string
(std::vector< std::string >) a I'aide de la fonction std::sort en ne comparant pas I'ensemble de
la chaine mais seulement a partir du second caractére (on supposera que le vecteur contient
uniquement des chaines d’au moins deux caractéres). Tester votre foncteur avec un jeu
d’essai simple.

5 - Créer un dernier foncteur permettant, a 'aide de la fonction std::for_each, de mettre en
majuscule I'ensemble des chaines de caractéres contenu dans un vecteur de string. Tester
votre foncteur.


http://fr.wikipedia.org/wiki/Suite_de_Fibonacci

