Examen de Java : ISIMA : 2°™ année, Filiére 2 et 3
Durée 2h, tous documents autorisés.

Question 1 (4 points) :

Soit une classe Emprunt : déclarer trois attributs « private », montant du prét, taux d’intérét, et
nombre d’années pour I’emprunt. (1 pt). Déclarer un constructeur qui accepte des valeurs pour
ces trois attributs (1 pt). Déclarer les méthodes d’acces pour les 3 attributs (1 pt). Déclarer une
méthode paiement, qui retourne le montant d’un paiement mensuel (simplifier le calcul en
considérant un paiement a taux fixe) (1 pt).

Questions 2 (5 Points) :

a) Comment rappeler 1’exécution d’une méthode de la superclasse au sein de la
redéfinition d’un méthode de méme nom ? (Codez par exemple dans une sous-classe
une méthode finalize qui fait appel au finalize de sa superclasse) (1 pt)

b) Lequel de ces mots n'est pas un mot clé réservé en Java : if, then, goto, case (1 pt)

c) Quel est le résultat de la compilation et de l'exécution du code suivant :

public class Conv{
public static void main(String argv[]) {
Conv c=new Conv{();
String s=new String("ello");
c.amethod(s) ;
}
public void amethod(String s) {
char c="'H';
c+=s;
System.out.println(c);
}
}

Réponse : (1) Hello (2) ello (3) elloH (4) Erreur a la compilation

d) Avec le code suivant, comment peux-t-on faire pour invoquer le constructeur de la
classe Base qui affiche la chaine de caracteres "base constructor” :

class Base{
Base (int 1) {
System.out.println("base constructor");
}
Base () {
}
}

public class Sup extends Base{

public static void main(String argv[]) {
Sup s= new Sup();
//One

}

Sup () |
//Two

}

public void derived() {
//Three

}

Réponses:
(1) En remplagant //One par Base(10); (2) En remplagant //One par super(10);
(3) En remplagant //Two par super(10); (4) En remplagant //Three par super(10);

e) Quel est le résultat de la compilation et de 1'exécution du code suivant :

public class Pass{

static int j=20;

public static void main(String argv([]) {
int 1=10;
Pass p = new Pass();
p.amethod (i) ;
System.out.println(i);
System.out.println(j);

}

public void amethod (int x) {

X=X*2;
j=3*2;
}
}
Réponse : (1) Erreur : a method parameter does not match variable

(2) 20
40

3) 10
40

“4) 10
20

Question 3 (2 points) :

Le compilateur crée automatiquement un nouvel objet String a chaque chaine de
caractere littérale rencontrée.

a) String s = "Hola Mundo";

Le code ci-dessus est équivalent a celui donné ci-dessous. A votre avis quel est le code
le plus efficace (1 pt) et combien d’objets String sont créés dans le cas a) et dans le cas
b) (1 pt).

b) String s = new String("Hola Mundo");

NOM : PRENOM : FILIERE :

Question 4 : Analyse de code (commenter sur la feuille d’examen)

A) Sur 5 points : commentez le code source suivant afin de montrer votre connaissance
du langage et votre maitrise de ce que vous avez étudié en TP.

[E: CursorFrame [_ (O]
Click the mouse... ||199 | 72

RESETl

hﬂanﬂng:ﬁpphtvﬁndnw

import java.awt.*;
import java.awt.event.*;

public class CursorFrame extends Frame {
TextField a, b;
Button btn;

public CursorFrame () {
super ("CursorFrame") ;
setSize (400, 200);

setLayout (new FlowLayout());
add (new Label("Click the mouse..."));
a = new TextField("O0", 4);
b = new TextField("0", 4);
)

4

btn = new Button ("RESET"
add(a); add(b); add(btn);

addMouseListener (new MouseAdapter () {
public void mousePressed(MouseEvent e) {
a.setText (String.valueOf (e.getX()));
b.setText (String.valueOf (e.get¥Y()));
}
P
addWindowListener (new WindowAdapter () {

public void windowClosing(WindowEvent e) {
setVisible(false);
dispose();
System.exit (0) ;
}
}) s

btn.addActionListener (new ActionListener () {
public void actionPerformed(ActionEvent e) {
a.setText ("0");
b.setText ("0");
}
}) s
}

public static void main(String[] args) {
CursorFrame app = new CursorFrame();
app.setVisible(true);
}

NOM : PRENOM : FILIERE :

B) Sur 4 points: Lors d’un entretien d’embauche on vous demande d’expliquer le
comportement des codes C++ et Java suivants, en fonction de vos connaissances en Java, C et
C++. Voici les informations dont vous disposez (les résultats sont donnés, il faut expliquer ce
qui se passe):

// code C++ (class string STL) // Code Java

string * sl = new string("hello");

string * s2 = sl; String sl = "hello";
String s2 = sl;

(*sl) += " world"; sl += " world";

cout << *sl << endl << *s2 << endl;

System.out.println(sl + "\n" + s2);
// Resulat
// sl = s2 = "hello world" // Resultat sl = "hello world"

// et s2 = "hello"

Le code Java ci-dessous, grace a la méthode identityHashCode de la class System,
donne “I’adresse” des variables dans la machine virtuelle Java.

// Code Java

String sl = "hello";

String s2 = sl;

System.out.println("sl = " + sl + "; s2 =" + s2);
System.out.println("System.identityHashCode(sl) = " + System.identityHashCode(sl));

System.out.println("System.identityHashCode (s2) " + System.identityHashCode(s2));

sl += " world";
System.out.println("\nsl = " + sl + "; s2 =" + s2);
System.out.println("System.identityHashCode(s2) = " + System.identityHashCode(s2));

L’exécution du code ci-dessus donne le résultat suivant :

sl = hello; s2 = hello

System.identityHashCode (sl) = 2452092
System.identityHashCode (s2) = 2452092
sl = hello world; s2 = hello

System.identityHashCode(sl) = 7474923
System.identityHashCode (s2) = 2452092

Because the compiler automatically creates a new String object for every literal
string it encounters, you can use a literal string to initialize a String.

String s = "Hola Mundo";

The above construct is equivalent to, but more efficient than, this one,
which ends up creating two Strings instead of one:

String s = new String("Hola Mundo");

The compiler creates the first string when it encounters the literal string
"Hola Mundo!", and the second one when it encounters new String

Note to C and C++ Programmers: The shortcut assignment operator += when used with
Strings may confuse C and C++ programmers at first. Recall that a += b is
equivalent to a = a + b. Let's look at two code samples written in C++ and the
Java programming language:

//C++ code

string* sl = new string("hello");
string* s2 = sl;
(*sl) += " world";

cout<<*sl<<endl<<*s2<<endl;
return 0;
//sl = s2 = "hello world"

//Java progamming language code

String sl = "hello";

String s2 = sl1;

sl += " world";

System.out.println(sl + "\n" + s2);
//sl = "hello world" and s2 = "hello"

In the C++ example, the strings sl and s2 print the same result because they both
point to the same address. In the Java programming language, Strings can't be
modified, so the + operator must create a new String when " world" is appended to
sl.

The following code sample illustrates that sl and s2 point to the same object
until you use the += operator to assign a new String to sl.

//Java programming language code

String sl = "hello";
String s2 = sl;
System.out.println("sl = " + sl

+ "y s2 =" + s82);

System.out.println("System.identityHashCode (sl) =
+ System.identityHashCode (sl));
System.out.println("System.identityHashCode (s2) =
+ System.identityHashCode (s2));

sl += " world";
System.out.println("\nsl = " + sl
+ "; s2 =" + s82);
System.out.println("System.identityHashCode (sl)
+ System.identityHashCode(sl)
System.out.println("System.identityHashCode (s2)
+ System.identityHashCode (s2)

- n
)i
)i
Here's the output:

sl = hello; s2 = hello

System.identityHashCode(sl) = 2452092
System.identityHashCode (s2) = 2452092
sl = hello world; s2 = hello

System.identityHashCode (sl) = 7474923
System.identityHashCode (s2) = 2452092

sl points to a new address after " world" is appended.

import java.lang.Math;
import java.io.DatalnputStream;

class loan {
private float principal = 0;
private float interestRate =
private int numYears = 0;

0;

loan(float thePrincipal, float thelnterest,
int theYearsToRepay)
{

principal = thePrincipal;
interestRate = thelnterest;
numYears = theYearsToRepay;

}

// accessor methods
float getPrincipal()
{

return principal;

}

float getInterestRate()
{
return interestRate;

}

int getYears()
{
return numYears;

}

double calculatePayment ()
{
// assuming monthly payments
double interest = interestRate/100;
double payment = (interest * principal/12) /
(1 - Math.pow(interest/12 + 1,
-12*numYears)) ;
return payment;

