
Isima

Christine FORCE 1

MÉTHODES ET

OUTILS DE

DÉVELOPPEMENT

LOGICIEL

1 2 3 4 5

Isima

Christine FORCE 2

Chapitre 1

INTRODUCTION AUX DÉMARCHES DE

DÉVELOPPEMENT LOGICIEL

Isima

Christine FORCE 3

DÉVELOPPEMENT LOGICIEL

Démarches de recueil des besoins, d'analyse et de co nception.

Méthodes de construction et d'obtention de la qualit é.

DÉMARCHES

OUTILS

GÉNIE LOGICIEL

Outils de modélisation,

Environnements de développement, AGL,
prototypage, gestion de versions et
configurations.

Langages.

Isima

Christine FORCE 4

DÉFINITIONS

UML : Unified Modelling Language, unification

(std OMG) des notations de modélisation objet (J.

Rumbaugh, G. Booch, I. Jacobson).

UP : Unified Process (Unified software

Development Process) : une démarche générique

de développement de logiciel.

SCRUM, XP (eXtreme Programming) : dérivées de

UP, développement itératif et adaptatif par étapes

courtes (méthodes agiles…).

DÉMARCHES

OUTIL

Isima

Christine FORCE 5

UN LOGICIEL CE N'EST PAS QUE DES
PROGRAMMES

Sources

Manuels
d'utilisation

Systèmes
Middleware

Outils

Supports
de livraison

Documentation

Isima

Christine FORCE 6

GÉNIE LOGICIEL : LES ADVERSAIRES

les utilisateurs

l'informaticien

Isima

Contrats

Besoins

Besoins

Logiciel

les décideurs

Isima

Christine FORCE 7

PROCESSUS DE
DÉVELOPPEMENT DE

LOGICIELBesoins des
Utilisateurs

Système
Logiciel

DEMARCHE DE DEVELOPPEMENT

Besoins des
Utilisateurs

Système
Logiciel

MODÈLE DESCRIPTIF
(Analyse)

Comprendre et
traduire les besoins

MODÈLE PRESCRIPTIF
(Technique)
Concevoir et

construire la solution

Modèle
d’Analyse

Modèle
Technique

Composants
logiciels

Le monde est rempli de choses

Isima

Christine FORCE 8

PROCESSUS DE
DÉVELOPPEMENT LOGICIEL

(Cycle de vie des applications)

Définir l’ordre des travaux pour un projet,

Spécifier les modèles et documents (artefacts) à
développer et leurs échéances,

Attribuer les responsabilités et les rôles dans les
équipes,

Permettre de suivre et évaluer les produits et les
activités du projet.

Processus (démarche) : description des différentes manières
d'organiser les activités du développement logiciel.

Isima

Christine FORCE 9

LA CRISE !

logiciel livré, mais jamais
utilisé avec succès : 47%

logiciel utilisé
tel que livré
2%

logiciel payé
mais non livré
27% logiciel utilisé

mais remanié
souvent puis
abandonné
19%

logiciel utilisé
après
modifications
3%

Isima

Christine FORCE 10

LA NOUVELLE CRISE

Première crise : 1965
Solutions? (NATO Summer School 1967) :
� « Software engineering »
� « Structured programming »
� « Top-down approaches »

Seconde crise : 2000
Solutions? (OMG novembre 2000) :
� « La Programmation Objets ou la Programmation par

Composant ne constituent que des réponses très part ielles
à la montée en complexité. Seules elles sont aujourd 'hui
insuffisantes ».

� « MDA : Decouple neutral business models from variab le
platforms »

� « Transformations as assets »

Isima

Christine FORCE 11

LES MÉTHODES DE CONCEPTION DE SYSTÈME

On distingue deux grandes familles de m éthodes :
Les m éthodes procédurales ou structurées :
� Séparation des données (base de données) et des

traitements qui les manipulent (les programmes)
Les m éthodes orientées objets :
� Intègrent au sein d’un objet (instance d’une classe)

les données (attributs) et les comportements
(méthodes ou opérations).

� Les m éthodes objets ont remplacé progressivement
les m éthodes dites structurées.

� Elles apparaissent à partir des années 1988.

Isima

Christine FORCE 12

LES MÉTHODES ORIENTÉES OBJET
Chronologie des méthodes

OOA: Object Oriented Analysis - 1979 - Shlaer et Mellors

OOD: Object Oriented Design - 1981 - Booch

OMT : Object Modeling Technique - 1987 - Rumbaugh

HOOD : Hierarchical Object Oriented Design - 1987 - Agenc e
Spaciale Européenne

OOSE : Object Oriented Software Engineering - 1990 - Jaco bson

OOA/OOD : Object Oriented Analysis/Object Oriented Design –
1991 - Codd et Yourdon

OOM : Orientations Objet dans Merise-1993-Rochfeld

Isima

Christine FORCE 13

TOUT N’EST PAS SI SIMPLE…

Même si les concepts objets sont stables et éprouvés ,

Et qu’ils bénéficient d’outils et de langages perfor mants,

Même si l’approche objets permet de concevoir les logi ciels

complexes et résistants aux évolutions :

L'approche objets est moins intuitive que l'approche

fonctionnelle,

L'application des concepts nécessite une très grande rigueur,

Les langages objets ne guident pas l'utilisation de s concepts,

Comment distinguer un "bon objet" d'un mauvais ?

Isima

Christine FORCE 14

UML , UN LANGAGE POUR :

Décrire, visualiser et comprendre

le problème,

Capturer et utiliser des connaissances pour la résoluti on du
problème,

Communiquer avec les utilisateurs et les experts des autres
disciplines

Spécifier, montrer et construire la solution,

Documenter la solution,

Quel que soit le domaine d'application.

Isima

Christine FORCE 15

CYCLE DE VIE EN V DU LOGICIEL

CODAGE
MISE AU POINT

ANALYSE

CONCEPTION
GENERALE

CONCEPTION
DETAILLEE

TESTS
FONCTIONNELS

INTÉGRATION

TESTS
UNITAIRES

ETUDE D’
OPPORTUNITÉ

VALIDATION DU
SYSTÉME

Demande

cahier des
charges

composants
mis au point

composants testés

logiciel intégré

logiciel testé

système validé

Dossiers
de tests

plan d'intégration

plan de vérification

plan de validation

simulation, prototypes

Dans ce modèle le principe est simple : chaque phas e se termine à une date précise
par la production de certains documents ou logiciel s. Les résultats sont soumis à une
revue approfondie, on ne passe à la phase suivante q ue s'ils sont jugés satisfaisants.
Une étape ne remet en cause que la précédente, ce q ui s'avère insuffisant en pratique.

Isima

Christine FORCE 16

CYCLE EN V

Pour :
Organisation simple et directe,
Décomposition du système en sous-systèmes,
Vérification ascendante.

Contre :
But de chaque étape = fabriquer un produit
interm édiaire (document papier), soumis à
évaluation et utilisé en l’état comme point de
départ pour l’étape suivante.
⇒⇒⇒⇒ Nombreux documents créés dans un
environnement bureaucratique,
Rigidité : planification à long terme détaillée,
Hypothèse erronée : les exigences sont stables,
Validation en fin de cycle (erreurs coûteuses),
Effet tunnel (le client ne voit rien avant la fin de la
réalisation).

Isima

Christine FORCE 17

ÉVOLUTIONS

Processus incrémental : développer par étape, en commençant les
fonctions clés.

Processus itératif : réaliser les phases du développement en
plusieurs itérations.

Prototypage : valider les besoins en permettant à l’utilisateur de se
faire une idée de ce que sera le produit final.

Management des exigences : gestion des changements des
besoins des utilisateurs.

Réutilisation de composants : code, conceptions, descriptions,
documents.

Gestion des risques : prévoir et éliminer (diminuer) les risques
d’échecs ou de dysfonctionnement.

Isima

Christine FORCE 18

PROCESSUS UNIFIÉ EN VITESSE

LES ACTIVITES

SPECIFICATION
des exigences

ANALYSE
du domaine

CONCEPTION
de l’architecture TESTS

IMPLEMENTATION

DEPLOIEMENT

Qu'est-ce qu'ILS veulent
faire avec ce logiciel ?

Avec quoi ILS travaillent ?

Comment
JE vais faire
ce logiciel ?

Chic, JE programme !

Super, ça marche !

J'installe et J'explique

Isima

Christine FORCE 19

PROCESSUS UNIFIE
LES PHASES

(s o u s) P R O J E T

Comportement
global

Raffinement
de l'architecture

Satisfaction
des

utilisateurs

���� ������������ ����

���� ������������ ����

���� �������� ������������ ����

���� �������� ������������ ��������

���� ���� ������������ ��������

Exigences

Inception
(étude

d'opportunité)
Élaboration Construction Transition

Analyse

Conception

Implémentation

Test

Isima

Christine FORCE 20

MÉTHODES AGILES
(Scrum, eXtreme Programming, RAD)

Processus plus léger et flexible,
Focalisé sur la réalisation,
Avec des pratiques réduisant les coûts du changemen t,
Basé sur l’expérience des chefs de projet :

Travail en équipe,
Livraisons fréquentes,
Communication accrue avec le client,
Relecture et nettoyage du code.

Simplicité avec pour règle : "Y're not gonna need it ! "
Boutons (des pratiques actuelles) tournés jusqu'à 10.

Isima

Christine FORCE 21

Chapitre 2

UML :

DIAGRAMMES

DE CLASSES

Isima

Christine FORCE 22

SPECIFICATION
DES BESOINS

ANALYSE

CONCEPTION
de l’architecture

TESTS

IMPLEMENTATION

+ A1 : entier
- A2 : string
A3: reel

Op1 (p1, p2) : string
Op2 (p3, p4) : entier
Op3 (p6) : reel

CLASSE A

CLASSE AA

+A1 : entier
- A2 : string

A3 : reel

Op1 (p1, p2) : string
Op2 (p3, p4) : entier
Op3 (p6) : reel

Diagramme
de classes
Technique

Diagramme
de classes
d’analyse

CLASSE A

CLASSE AA

DIAGRAMMES DE CLASSES

Comme la plupart des
modèles UML, les

diagrammes de classes
s’utilisent à 2 niveaux

Isima

Christine FORCE 23

DIAGRAMME DE
CLASSES D’ANALYSE

Décrire de façon abstraite un ensemble d’objets,

Factoriser des éléments communs à un ensemble d’objets ,

Décrire le domaine de définition d’un ensemble d’obje ts,

Identifier les concepts : dresser une liste de choses ou d'idées

présentes dans l'environnement (le m étier) des utilisateurs,

Décrire les relations entre ces concepts (inclusion, utilisation,

communication, dérivation…).

Isima

Christine FORCE 24

EXEMPLE : PLANIFICATION

École
+École : string

Planning1

Récréation

+ExisteConflit()
Impossibilité

Synthèse

+Calculer()
+CompterRecres()
+CompterStatuts()

Période
+Jour : integer
+Debut : integer
+Fin : string

+Recouvrement()

Professeur
+Nom : string
+Statut : string

1..*

1

1

1..*

1

1

0..*

+AFaire()
1..*

1

1

surveille�

+localisation : string

�Contient

1

�emploie�
a besoin

gère�

Isima

Christine FORCE 25

DIAGRAMME DE
CLASSES TECHNIQUE

Il traduit le diagramme du domaine

en architecture du logiciel.

Il est beaucoup plus détaillé (cf. page suivante) .

Il donne des informations techniques (méthodes, att ributs)

Il contient souvent plusieurs modèles :

Modèle d‘Interface Humain Ordinateur (présentation) .

Modèle application (objets de contrôle, pilotage).

Modèle métier (les objets provenant de l’analyse).

Modèle d'accès aux données (requêtes).

Modèle des classes persistantes (modèle relationnel ?).

Voir un exemple en fin de l’étude de cas

Isima

Christine FORCE 26

<<Interface>>
COM.cariboulake.util:ObservableDistant

+ ajouterObserver()
+ effacerObserver()

<<singleton>>
Organisateur

+ ajouterPlanning()
+ supprimerPlanning()
+ compterPlannings()
+ getPlanning()
+ compter Récrés()
+ getEquipe()
setEquipe()
setChangéEtAvertir ()

<<singleton>>
EquipeImpl

-mEcole:String
-Professeur:Vecteur
-morganisateur:Organisateur
+ ajouterProfesseur()
+ supprimerProfesseur()
+ compterProfesseurs()
+ getProfesseurs()
+ compterStatuts ()
+ getEcole()
+ setEcole()
getOrganisateur()
setOrganisateur ()

- Jour :Day
- Début : Time
- Fin : Time

PériodeImpl

+ getJour()
+ setJour()
+ getHeure()
+ setHeure()
+ getMinute()
+ setMinute()
+ getDurée()
+ setDutrée()
chercherRecouvrement ()

PlanningImpl

-mLieu : String
mRécréations : Vecteur

+ ajouterRécré()
+ SupprimerRécré ()
+ compterRécrés()
+ getRécré ()
+ supprimerToutesRécrés()
+ getLieu()
+ setLieu()

RécréationImpl

+ affecterProfesseur()
+ enleverProfesseur()
+ estSurveillée()
+ existeConflit()

<<Interface>>
COM.cariboulake.util:RemoteObserver

+metAJour()

<<Interface>>
AffichageSynthèse

+ rafraîchir()

AffichageSynthèseImpl

<<Interface>>
Serialization

ImpossibilitéImpl

<<interface>>
Professeur

+ ajouterImpossibilité()
+ supprimerImpossibilité()
+ compterImpossibilités()
+ getImpossibilités()
+ compterSurveillances()
+ aFaire ()
+ getStatut()
+ setStatut()
+ getNom()
+ setnom()

*

1 *

1

1

1

*

1

1

1

1

*

Planning.
client

<<interface>>
Equipe

+ ajouterProfesseur()
+ supprimerProfesseur()
+ compterProfesseurs()
+ getProfesseurs()
+ compterStatuts ()
+ getEcole()
+ setEcole()

<<implémente>>

ProfesseurImpl

-mNom : String
- Statut : Float
-mImpossibilités : Vecteur
-mSurveillances : Vecteur

+ ajouterImpossibilité()
+ supprimerImpossibilité()
+ compterImpossibilités()
+ getImpossibilités()
+ compterSurveillances()
+ aFaire ()
+ getStatut()
+ setStatut()
+ getNom()
+ setnom()
ajouterSurveillance()
supprimerSurveillance()
getSurveillance()
surveillanceAvecConflit ()
impossibilitésAvecConflit ()
getEquipe()
setEquipe()

1<<implémente>>

<<Interface>>
Organisateur

+ ajouterPlanning()
+ supprimerPlanning()
+ compterPlannings()
+ getPlanning()
+ compter Récrés()
+ getEquipe()

<<implémente>>

<<implémente>>

<<implémente>>

<<Interface>>
Impossibilité

<<implémente>>

<<implémente>>

spécifie

<<Interface>>
Récréation

+ affecterProfesseur()
+ enleverProfesseur()
+ estSurveillée()
+ existeConflit()

-mSurveillée:ProfesseurImpl

<<implémente>>

<<Interface>>
Distant

<<implémente>>

<<Interface>>
Planning

+ ajouterRécré()
+ SupprimerRécré ()
+ compterRécrés()
+ getRécré ()
+ supprimerToutesRécrés()
+ getLieu()
+ setLieu()

*

<<implémente>>

<<implémente>>

COM.cariboulake.util:Observable

+ ajouterObserver()
+ effacerObserver()
setChangé()
avertirObserver()

+metAJour()
+ rafraîchir()

AffichagePlanning

Planificateur

-démarrerServeur ()
-stopperServeur

1 1

organise
<<implémente>>

surveille

UnicastRemote
Object

SYSTÈME DE PLANIFICATION : DIAGRAMME DE CLASSES IMP LÉMENTÉ

Isima

Christine FORCE 27

PLAN DU CHAPITRE

I - CLASSES D’ANALYSE

II - CLASSES TECHNIQUES

III - EXERCICES

IV - DIAGRAMMES D'OBJETS

Isima

Christine FORCE 28

I - CLASSES D’ANALYSE
REPRÉSENTATION

Classe

en analyse on peut indiquer
(mais on ne le fait pas toujours)
les attributs et les opérations

fondamentaux de la classe.

combattre

nom
fonction
dateNaissance

exemple

attributs

opérations

I - CLASSES D’ANALYSE

Il s’agit de décrire les objets du métier de l’util isateur,
avec le point de vue et le vocabulaire de cet utili sateur.

But : comprendre comment le client travaille et
communiquer avec lui (pour vérifier que l’on a bien compris).

Gaulois

Isima

Christine FORCE 29

Classe A
est associée 4444 Classe B

Personne
travaille pour 4444 Société Personne Société

employé

employeur

ASSOCIATIONS

Classe A
Rôle A

Rôle B
Classe B

Au choix : nommage de l’association ou nommage des rôles (extrémités)

I - CLASSES D’ANALYSE

Le nom de l’association apparaît en italique sur la ligne qui la symbolise,
l’usage recommande de choisir une forme verbale act ive (travaille pour) ou
passive (est employé par). Le sens de lecture du nom est indiqué par un
triangle ��������ou un signe < ou >.

Le rôle décrit comment une classe voit une autre cl asse, au travers d’une
association (forme nominale).

Isima

Christine FORCE 30

ASSOCIATIONS

Université Personne

étudiant

enseignantemployeur

établissement

Personne VoitureConduire 4444

Démarrer 4444
Laver4444

bricoler 4444

I - CLASSES D’ANALYSE

On peut avoir plusieurs associations

entre 2 classes à condition qu’elles

représentent des concepts différents.

Le nommage des rôles prend tout son

intérêt lorsque plusieurs associations

relient deux classes.

Personne

1..2
parent

*
enfant

Association réflexive

Personne Voiture

propriétaire véhicule

Parent Enfant
1..2

*

Isima

Christine FORCE 31

MULTIPLICITES

*

0..1

m..n

1

Multiplicités

Classe

Classe

Classe

Classe

Classe
1..*

I - CLASSES D’ANALYSE

Exactement 1

Plusieurs
(de 0 à n)

De 1 à n

optionnel

Spécifié
numériquement

gaulois Romain
1 *

bat ����

Char

conduit
����

1

1

Cheval

1..3

1
tiré par

����

Exemple

Isima

Christine FORCE 32

CLASSES D’ASSOCIATION

Emploi

*
*

PersonneSociété

salaire

Exemple de classe d’association

I - CLASSES D’ANALYSE

« classe
d’association »

Une société emploie
plusieurs personnes.

Une personne peut être
employée par plusieurs

sociétés. L’attribut
"salaire" est porté
par l’association

Les associations plusieurs à plusieurs (*-*) se réif ient par des
classes d'associations qui permettent de décrire de s attributs

caractérisant le lien (elles ne modélisent pas des objets).

Isima

Christine FORCE 33

ASSOCIATIONS TERNAIRES

Professeur

Etudiant

Salle1

1..*

1

Professeur 1 Salle1

« association ternaire »
Cours

jour
heure

Etudiant

1..*

1 1

1

I - CLASSES D’ANALYSE

Les associations ternaires
sont souvent très ambiguës,

mais elles servent pour
esquisser le modèle, par

exemple au début de l’analyse.
Il faut les transformer

en plusieurs associations
binaires (en créant des

classes d’association).

Isima

Christine FORCE 34

ASSOCIATIONS

un personne peut être mariée ou pacsée (mais pas le s 2)

Personne Classe

élève

{sous
ensemble}

délégué

0..*

0..*

classe

classe

les délégués sont aussi des élèves

I - CLASSES D’ANALYSE

Les contraintes expriment les règles de validité, d e
cohérence ou de sémantique. Une contrainte est une
expression entre accolades :

{description de la contrainte}.
Il existe des contraintes prédéfinies par UML :

ordonné, sous-ensemble, ou exclusif (xor).
OCL (Object Constraint Language) permet de décrire

des contraintes complexes.

Est
pacsée
à ����

Personne

{ou exclusif}

Homme

Femme

est marié
à ����

0..1

0..1 0..1

0..1

Isima

Christine FORCE 35

ASSOCIATIONS

Remplacer une association (agrégation) par un attri but relève de
l’implémentation, non de la modélisation.

On évitera de le faire en analyse pour :

Préserver le caractère bidirectionnel de l’associat ion.

Révéler les cardinalités.

Faciliter la compréhension du modèle par les non sp écialistes.

Préserver l’aspect visuel convivial de la représent ation.

Identifier, grâce au diagramme, l’impact que peut a voir le retrait
d’une classe.

Critère : si l’on ne peut demander à un élément que sa valeur il s’agit
d’un simple attribut, si l’on peut lui poser plusie urs questions, c’est un
objet.

I - CLASSES D’ANALYSE

Isima

Christine FORCE 36

Super-
Classe

Sous-classe 1 Sous-classe 2

Gaulois

Guerrier Druide Barde

GÉNÉRALISATION/SPÉCIALISATION

I - CLASSES D’ANALYSE

UML emploie le terme de généralisation pour désigne r la
relation de classification entre un élément général et un
élément plus spécifique. La généralisation est souv ent réalisée
en utilisant la relation d’héritage des langages ob jets. C’est une
manière de réaliser la classification, mais ce n’es t pas la seule .
La généralisation UML est plus abstraite que l’héri tage.

En italique si
abstraite. A la
main, on écrit
« abstraite »

Isima

Christine FORCE 37

CLASSIFICATION/SPECIALISATION MULTIPLE

{inclusif}

Propulsion Milieu

Véhicule

A voileA moteur Terrestre Marin Terminator

classification multiple :
un objet est instance de plusieurs classes

Spécialisation multiple :
une classe hérite de plusieurs classes

MachineHumain

I - CLASSES D’ANALYSE

Une classe peut être spécialisée selon plusieurs cr itères simultanément.
Chaque critère de la généralisation est indiqué par un discriminant.
Il permet de spécifier les combinaisons cohérentes de sous classes.

Plusieurs sous-classes peuvent partager un même dis criminant, elles sont
alors disjointes. Une instance dérivée d’une super- classe ne peut être
instance que d’une seule sous classe avec le discri minant commun

Discriminant

contrainte

Isima

Christine FORCE 38

CONTRAINTES

Plusieurs contraintes peuvent être appliquées aux r elations de
généralisation :

La contrainte {disjoint} ou {exclusif} indique qu’u ne classe
descendante d’une classe A ne peut être descendante que d’une seule
sous-classe de A (défaut).

La contrainte {chevauchement} ou {inclusif} indique qu’une classe
descendante d’une classe A appartient au produit c artésien des sous-
classes de la classe A. Un objet concret est alors construit à partir
d’une classe obtenue par mélange de plusieurs super -classes.

{incomplète} indique une généralisation extensible.

{complète} indique qu’une instance est forcément d’ une des sous
classes (la super classe est alors abstraite).

I - CLASSES D’ANALYSE

Isima

Christine FORCE 39

?
Produit

Produit
Normal

Produit
Dangereux

Produit

Produit
Dangereux

Animal

Animal
QuiMange

Herbivore Carnivore

Serveur
Travaille pour 4444

Maître
d’Hotel

Cuisinier

Restaurant

Travaille pour 4444 RestaurantEmployé

Cuisinier Serveur Maître
d’Hotel

Chien ChienJaune

I - CLASSES D’ANALYSE

Isima

Christine FORCE 40

PRÉCISIONS

En UML, sauf si le contraire est spécifié explicitem ent, les hypothèses
par défaut sont :

Héritage multiple : une classe peut hériter de plus ieurs super-
classes,

Classification simple : un objet est instance d'une seule classe,

Classification statique : un objet est créé à partir d'une classe et
n'en change pas.

Toutes les associations de la classe mère s’appliqu ent par défaut aux
classes dérivées.

Un héritage ne se justifie que si la classe dérivée possède au moins un
attribut, une méthode ou une association spécifique .

I - CLASSES D’ANALYSE

Isima

Christine FORCE 41

COMPOSITION

Classe
composite

Livre page
{ordonné}

Armorique
Camp

Romain

Village
Gaulois

1

Tente
1..*

Hutte
1..*

1..*

0..*

L’élément composite est responsable de
la création, de la copie et la destruction
de ses composants.

I - CLASSES D’ANALYSE

Composition :
inclusion physique

d’un objet dans un autre.
La durée de vie des

composants est
identique à celle du

composite (si le
composite est détruit,

les composants aussi).

Composants

Isima

Christine FORCE 42

AGRÉGATION

Classe

Personne immeuble
1..*

Propriétaire

Camion Chauffeur

⊳ est affecté

Equipe Joueur
1..*

⊳ appartient

*

*

L’agrégation est une
association transitive

L’agrégation ou
composition par référence
est une forme dégénérée

de la composition.
C’est un lien entre deux

classes dont les durées de vie
peuvent être indépendantes.
L’agrégation indique souvent
une association impliquant

une subordination

I - CLASSES D’ANALYSE

Isima

Christine FORCE 43

?

Personne Nom
+nom

Personne

Magasin Listede
Clients Client

1

1 1..*

Pays Villes Habitants
1..*1..*

Gestionnaire
DeMémoireMémoire

- gestionnaire
DeMémoire

Mémoire

Gestionnaire
DeMémoireMémoire

Gestionnaire
DeMémoire

Mémoire

ou

I - CLASSES D’ANALYSE

Isima

Christine FORCE 44

II - CLASSES DE CONCEPTION

Attribut : type = valeur initiale

Méthode (arguments
: type[= défaut],...)
: type de retour

Nom de la classe

Visibilité des attributs et des opérations

signature

Nom de la classe

+ méthode publique ()
méthode protégée ()
- méthode privée ()
méthode abstraite ()
méthode de classe ()

+ attribut public
attribut protégé
- attribut privé
~ att. visible du paquet
/ attribut dérivé
attribut de classe

En conception il s’agit
de représenter l’architecture
d’un logiciel, on montre donc
des détails d’implémentation.

Isima

Christine FORCE 45

Classe d'analyse Classe technique
(Conception du logiciel)

Les associations se transforment en références
(échanges d’attributs entre classes)

II - CLASSES DE CONCEPTION

CONCEPTION : TRADUCTION DES ASSOCIATIONS

Romain

Char

conduit
����

1

1

- identifiantRomain : String
- nom : String
- fonction : String
- dateNaissance : Date
- véhicule : Char

Romain

+ calculAge(dn:Date) : int
+ get…
+ set…

- numVéhicule : int
- marque : String
- dateAchat : Date
- propriétaire : Romain

Char

+ addTuning ()
+ get…
+ set…

Isima

Christine FORCE 46

CLASSE D’ASSOCIATION

Emploi

0..*
0..*

PersonneSociété

salaire

- personneId : String
- emplois : Collection<Emploi>

Personne

+ get…
+ set…

- emploiId : String
- personne : Personne
- société : Société
- salaire : Integer

Emploi

+ get…
+ set…

employéemployeur

Analyse

Conception

Société

+ get…
+ set…

- sociétéId : String
- emplois : collection<Emploi>

II - CLASSES DE CONCEPTION

Isima

Christine FORCE 47

ASSOCIATION TERNAIRE

- professeurId : String
- cours : collection<Cours>

Professeur

+ get…
+ set…

- salleId : integer
- cours : collection<Cours>

Salle

+ get…
+ set…

- coursId : String
- salle : Salle
- professeur : Professeur
- etudiants : Collection<>
- jour : Date
- heure …

Cours

+ get…
+ set…

- EtudiantId : String
- cours : Collection<>

Etudiant

+ get…
+ set…

Analyse

Conception

Etudiant

1..*

Professeur

1

Salle

1

« association ternaire »
Cours

jour
heure

0..* 0..*

II - CLASSES DE CONCEPTION

Isima

Christine FORCE 48

Associations navigables dans un seul sens

Source cible Centurion CampRomain
1 1

dirige ����

Navigabilité restreinte
(on peut aller de la source vers la cible, mais non le contraire)

L’extrémité du côté de la classe Centurion n’est pas navigable : cela signifie
que les instances de la classe CampRomain ne stocke nt d’objet du type

Centurion. Inversement, la terminaison du côté de la classe CampRomain est
navigable : chaque objet centurion possède un attrib ut de classe CampRomain.

Isima

Christine FORCE 49

- nom : String
- fonction : String
- dateNaissance : Date
- aGagne : Collection<Bataille>
+ getNom () : String
+ setNom (nom : String)
.
.
.
+ addBataille (babaorum : Bataille)

Gaulois

...
+ get…
+ set…

Bataille - type : String
- valeur : Integer

+ getType () : String
+ setType (type : String)
+ getValeur() : Integer
+ setValeur (valeur : Integer)

Trophee

Analyse

Conception

EXEMPLE DE NAVIGABILITÉ RESTREINTE

+nom
+fonction
+dateNaissance

Gaulois

+type
+valeur

Trophee

+lieu
+date

Bataille

gagne >

1

< rapporte

0..*

0..*

II - CLASSES DE CONCEPTION

- lieu : String
- date : Date
- vainqueur : Gaulois
- trophees : liste<Trophee>

Isima

Christine FORCE 50

III – EXERCICES
BRAIN STORMING

Préparer un diagramme de classes montrant au moins 10 relations entre

les objets suivants. Inclure les associations, les agrégations et les

généralisations. Placer les multiplicités.

(a) école, terrain de jeu, proviseur, conseil de cl asse, salle de classe, livre,

élève, professeur, cafétéria, ordinateur, bureau, c haise, porte.

(b) château, douve, pont-levis, tour, fantôme, esca lier, donjon, plancher,

couloir, salle, fenêtre, pierre, seigneur, dame, cu isinier.

(c) Automobile, roue, frein, moteur, porte, batteri e, silencieux, pot

d’échappement.

Isima

Christine FORCE 51

PROBLÈME 1 : MEDUSE

La médiathèque de l’Université des Schtroumfs Erudit s (USE) possède des
ouvrages. Ils peuvent être des livres, des CD ou de s DVD qui existent en plusieurs
exemplaires. Les informations à stocker sur un ouvra ge dépendent de son type.

La médiathèque est gérée par des documentalistes et est fréquentée par des
lecteurs. Ces lecteurs sont des étudiants de l’USE, des enseignants ou des
extérieurs. Ils peuvent emprunter 5 exemplaires au maximum lorsqu’ils sont
inscrits. Un lecteur ayant commis des abus (rendus en retard, détériorations…)
peut être interdit d’emprunt (durée décidée par le documentaliste).

Pour pouvoir être emprunté, un exemplaire doit être disponible (non emprunté,
non réservé). Chaque emprunt a une durée limitée à 4 semaines.

Un exemplaire emprunté peut être réservé par un autre lecteur, cette réservation
reste effective pendant 2 semaines après la date de retour du livre. Passé ce délai
la réservation est annulée.

Le documentaliste peut ajouter des ouvrages ou des exemplaires d’un ouvrage
dans MEDUSE, il peut également en supprimer (perte, vieillissement…).

Seul le documentaliste peut exécuter les mises à jou r des ouvrages, des lecteurs
et des emprunts. Pour chaque exemplaire on conserve l’emprunteur courant.

Les lecteurs effectuent des recherches sur la disci pline, des mots clés, l’auteur,
le titre, la date de parution... Pour cela ils util isent MEDUSE en consultation.

Isima

Christine FORCE 52

PROBLÈME 2 : RALLYE
CLERMONT IRKOUTSK

III - EXERCICES

On souhaite construire une application pour un rall ye :

Un véhicule est caractérisé par la marque, le modèle et la cylindrée. Une
voiture est conduite par un pilote aidé d’un navigat eur. Une moto est
conduite par un pilote. Le pilote et le navigateur ont un numéro de licence
(affiliation à la fédération) et un numéro de dossar d (inscription à la course).

De plus, chaque véhicule est rattaché à une équipe (c aractéristiques : nom,
budget) qui lui fournit assistance et ravitaillemen t (une même équipe peut
gérer plusieurs véhicules de catégories différentes). L’équipe est composée
de membres officiellement inscrits auxquels on attr ibue un numéro de badge
et contient un responsable (joint à tout moment grâc e à son numéro de
téléphone mobile), des assistants techniques (spéci alités : mécanique,
logistique, etc.) et bien sûr les concurrents en ch arge d’un véhicule de
l’équipe (toujours le même).

Isima

Christine FORCE 53

PROBLÈME 2 : RALLYE
CLERMONT IRKOUTSK

La course se déroule par étapes. Chaque étape est c aractérisée par un
numéro, le nom de la ville de départ et de la ville d’arrivée.

Types d’étapes : étapes de transition, étapes en lig ne et étapes spéciales.

Les étapes de transition ne servent qu’à permettre a ux véhicules de
transiter du point d’arrivée d’une étape au point d e départ d’une autre.
Elles ne rapportent pas de points.

Dans une étape en ligne tous les véhicules d’une mê me catégorie partent
en même temps et doivent effectuer le même parcours .

Une spéciale est un groupe de courtes étapes contre la montre. Le temps
du véhicule est obtenu par la somme des temps de ch aque étape contre la
montre formant la spéciale.

Le classement des véhicule est fonction du temps de chaque étape.

III - EXERCICES

Isima

Christine FORCE 54

SOLUTION

Trouver les classes,

éliminer les classes superflues (attributs),

trouver un nom,

Trouver les associations (verbes ou rôles),

Factoriser (généraliser),

Tester les chemins d’accès aux classes,

Itérer et affiner.

III - EXERCICES

Isima

Christine FORCE 55

LES ERREURS A EVITER

Les classes redondantes (celles qui modélisent des c oncepts
similaires).

Les classes qui modélisent des implémentations poss ibles
des éléments du domaine (par exemple un conteneur) .

Les propriétés non factorisées (on construit souvent le graphe
d’héritage vers le haut).

La multiplication des associations qui crée des che mins
redondants entre classes.

III - EXERCICES

Isima

Christine FORCE 56

V - DIAGRAMMES D'OBJETS

Décrivent un état possible à un instant tttt, un cas particulier,

une situation concrète, un cas réel.

Doivent être conformes au diagramme de classes.

Sont souvent établis en parallèle avec les diagrammes de

classes.

Peuvent être construit avant les diagrammes de classe s afin

de « découvrir » les classes.

Peuvent être utilisés pour :

Expliquer un diagramme de classes (donner un exemple).

Valider un diagramme de classes (le tester).

Isima

Christine FORCE 57

EXEMPLES

Personne

1..2
parent enfant

tom :
Personne

lynette :
Personne kayla :

Personne

parent

parent enfant

preston :
Personne

enfant

Personne
Travaille pour 4444 Société

lynette:
Personne

Travaille pour4444 pizzéria:
Société

porter :
Personne

enfant

1..* 1..*

agencePub :
Société

Travaille pour
4444

0..*

V - DIAGRAMMES D'OBJETS

Parker, Penny…

Isima

Christine FORCE 58

Chapitre 3

LES DIAGRAMMES

DE PAQUET
(Package Diagrams)

Isima

Christine FORCE 59

DIAGRAMME DE PAQUET

Un paquet (package) UML est une m écanique de
groupement.

Les classes peuvent être groupées au sein d’une même
unité, sujet, sous-système d’objets en raison de leu rs
objectifs communs.

La notion de paquet peut être appliquée à n’importe q uel
élément du modèle, pas seulement aux classes.

Les critères de découpage dépendent de la phase du
processus de développement.

Isima

Christine FORCE 60

QU’EST-CE QU’ON MET DANS UN PAQUET ?

Découpage fonctionnel : pour attribuer les objectifs et les

responsabilités à chaque équipe de réalisation, il es t

possible de définir des paquets a priori, représentan t

chacun un sous-système fonctionnel du système à réali ser

(Cas d’Utilisation).

Découpage structurel : classes ayant un lien logique ou une

définition voisine (ex : les classes reliées par une relation

d’héritage) .

Découpage “ pratique ” : pour la lisibilité du modèle ou la

facilité d’utilisation des AGL.

Isima

Christine FORCE 61

DIAGRAMME DE PAQUET

Librairie
Graphique

IHO Domaine

Nom symbolique
du paquet

Dépendance entre paquets :
Au moins un élément du paquet
source utilise les services d’au
moins un élément du paquet cible
(relation d’obsolescence entre les
éléments des 2 paquets)

Héritage entre paquets :
il existe au moins un élément
du paquet source qui
spécialise (au moins) un
élément du paquet cible

Isima

Christine FORCE 62

Contrôleur
emprunt

Biblio

AccèsBD
{abstrait}

Accès
Oracle

Accès
Posgres

Ouvrages Lecteurs

Contrôleur
liste

diffusion

Librairie
graphique

EXEMPLE

«import»

«access» «access»

«import»

«access»

«access»

IHO
liste

diffusion

Une dépendance de type
« access » signifie que le
contenu public de la cible
est accessible au paquet
source.

Une dépendance de type
« import » signifie que le
contenu public de la cible
est ajouté à l’espace de
nommage de la source.

IHO
Emprunt

Isima

Christine FORCE 63

DIAGRAMME DE PAQUET

Biblio

Simulateur
«framework»

SimulateurBiblio

Ouvrages Lecteurs
Ouvrages Lecteurs

Description hiérarchique des paquets : sous forme
d’arbre ou en montrant les paquets inclus.

Stéréotype d'un paquet
(framework, toplevel…)

Isima

Christine FORCE 64

CONCEPTION DES PAQUETS

Minimiser le couplage inter paquets :

Le moins de dépendances possibles.
� « on ne parle pas aux étrangers » !

Maximiser la cohésion intra paquet :

Regrouper les éléments en forte relation,

Regrouper les classes qui rendent des services de même
nature aux utilisateurs,

Isoler les classes réellement stables de celles qui risquent
d’évoluer au cours du projet,

Isoler les classes m étiers des classes applicatives,

Distinguer les classes dont les objets ont des durée s de vie
différentes.

Vérifier les dépendances circulaires.

Isima

Christine FORCE 65

INTERFACES ENTRE PAQUETS

L’interface d’un paquet est l’ensemble des classes

publiques du paquet.

Les interfaces doivent contenir :

Seulement l’information nécessaire :

� L’interface doit révéler le moins d’information pos sible…

Toute l’information nécessaire :

� L’interface doit donner aux autres modules l’inform ation

suffisante pour pouvoir utiliser les ressources off ertes.

Pour favoriser l’évolution du système.

� Cacher les détails de bas niveau (algorithmes, SDD, etc.).

Isima

Christine FORCE 66

Chapitre 4

LES DIAGRAMMES

D'ÉTATS
(State Machine Diagrams ou

diagrammes états-transitions)

Isima

Christine FORCE 67

DIAGRAMMES D'ÉTATS

Modèles de Classes
et d’Objets

Dynamique
des Objets

Scénarios
Fonctionnels

Modèle des
Processus

MODELE
D’ANALYSE

MODELE
TECHNIQUE

CLASSES FONCTIONS

En
panne

En Etat de
Marche

Créer
(immatriculation)

casser
Réparer

Détruire

Les diagrammes d’états sont utilisés pour compléter aussi
bien le diagramme de classes d’analyse que le diagr amme de
classes technique. Ils sont élaborés pour une classe afin
de visualiser le comportement d’un objet au cours d u temps.

Isima

Christine FORCE 68

LES DIAGRAMMES D'ÉTATS

Modéliser les objets réactifs : ceux dont le comporte ment

est caractérisé par leur réaction à des événements issu s de

l'extérieur de leur contexte (envoyés par d’autres obj ets).

Spécifier :

Les états stables des objets ayant un comportement

dynamique complexe,

Les événements qui déclenchent les transitions d'éta ts,

Les actions qui se réalisent à chaque changement

d'état ou à l’intérieur d’un état.

Isima

Christine FORCE 69

ETATS D’UN EXEMPLAIRE DE MEDUSE

Emprunté

Manquant
restitution

restitution

Emprunt

Après 1
mois

Après 1 an

vol

Disponible
achat

Destruction
de l’objet

Un état de l’objet
Événement
déclenchant

une transition

Création
De l’objet =

Point d’entrée
unique

vol

Exemplaire

Isima

Christine FORCE 70

QUAND FAIT-ON UN DIAGRAMME D’ÉTATS ?

Lorsque les objets d’une classe réagissent différemme nt à

l’occurrence du même événement et que chaque type de

réaction caractérise un état particulier.

Un état représente une situation de la vie d’un obj et pendant

laquelle :

Il satisfait une certaine condition,

Il exécute une certaine activité,

Il attend un certain événement.

Un état a une durée non négligeable mais finie, vari able selon

la vie de l’objet, en fonction des événements qui l ui arrivent.

Isima

Christine FORCE 71

QU’EST-CE QU’UN ÉVÉNEMENT ?

Signal : événement nomm é, déclenché explicitement (exemple :
un envoi de message asynchrone).

Appel de m éthode : invocation synchrone d’une opération.

Temporisation : passage du temps

exemple : après (after) 10 sec.

Changement : modification de conditions

exemple : quand (when) température > 100°.

Un Objet Un Autre
Objet

1 : événement

2 : réaction

Un État Un Autre ÉtatUn Événement

Dans un diagramme
d’interaction on aura
par exemple:

Isima

Christine FORCE 72

Un État Un Autre ÉtatÉvénement [garde] / action

LES TRANSITIONS

Transition gardée : la transition se réalise si l’évén ement se produit
et si la garde (ou condition) est vraie.

La condition porte sur des informations visibles et accessibles de
l’objet (paramètres de l’evt, valeurs internes, don nées globales).

Gardes :
Doivent être mutuellement exclusives pour chaque év énement,

Doivent couvrir tous les cas.

Action : opérations dont le temps d’exécution est né gligeable ou
nul (une action est instantanée). Une action est :

non sécable : toute action commencée se termine,

déclenchée après l’évaluation de la garde,

une méthode de la classe de l’objet destinataire de l’événement.

Isima

Christine FORCE 73

Etat A
Do / activité
cyclique

Etat A
Do / activité
séquentielle C

B[garde]

LES ACTIVITÉS

C

BEvt 1

Evt 2

[garde]

Les activités s’exécutent à l’intérieur des états et peuvent prend re du temps,
les activités peuvent être interrompues par l’occur rence d’un événement.

Exemple 2 : une activité
séquentielle déclenche une
transition automatique (avec
garde ici) : une des 2
transitions est déclenchée dès
que l’activité se termine, selon
la valeur de la condition.

Exemple 1 : une activité
cyclique est interrompue par
l’occurrence d’événements.

Isima

Christine FORCE 74

LES ÉVÉNEMENTS INTERNES

Etat A
entry / action d’entrée
on evt / action
exit / action de sortie

Saisie mot de passe

entry / bloquer les entrées
clavier
do / gérer caractères saisis
on aide / afficher l'aide
exit / afficher entrées
clavier

Exemple

Événement interne (introduit par le
mot clé « on ») : génère une action
qui ne déclenche pas de transition.

Evénements spéciaux entry et exit :
déclenchent des actions en entrée et
en sortie de l’état.

Isima

Christine FORCE 75

Etat A
Entry / Op2
Do / Op3
On event / Op5
Exit / Op4

evt1/Op1

Evt2/Op6

Evt3/Op7

INDIQUER LES OPÉRATIONS

Il y a 7 manières différentes d’indiquer « des chose s à faire » dans un diagramme d’états

Isima

Christine FORCE 76

ÉTAT COMPOSITE
(SUPER ÉTAT)

décrochéraccroché bouton vert

bouton rouge

décroché

départ
entry/envoyer tonalité
exit/ arrêter tonalité

Chiffre(n)

numérotation partielle

entry/Numéro.ajouter(n)
[Numéro.isValid ()]

Chiffre(n)

connexion déconnexion

etc.

point d’entrée dans
le super état

retour à l’état
englobant

téléphone fixe

Isima

Christine FORCE 77

historique : indique la
mémorisation du

dernier sous état visité

HISTORIQUE

lavage

séchage

lustrage

attente

H

Arrêt
d’urgence

reprise

après 2 mn

après 4 mn

après 2 mn

après 2 mn

marche

H* indique que le dernier sous-état visité est mémor isé, quelle que soit la
profondeur d’emboîtement des sous-états.

Lavauto

Isima

Christine FORCE 78

ÉTATS ORTHOGONAUX

Les diagrammes d’états permettent de décrire efficaceme nt
les m écanismes concurrents grâce à l’utilisation d’ états
orthogonaux .

Un état orthogonal est un état composite comportant
plus d’une région, chaque région représentant un fl ot
d’exécution.
Graphiquement, dans un état orthogonal, les différent es
régions sont séparées par un trait horizontal en poin tillé
allant du bord gauche au bord droit de l’état composi te.

Chaque région peut posséder un état initial et fina l. Une
transition qui atteint la bordure d’un état composite
orthogonal est équivalente à une transition qui attei nt les
états initiaux de toutes ses régions concurrentes.
Toutes les régions concurrentes d’un état composite
orthogonal doivent atteindre leur état final pour que l’état
composite soit considéré comme terminé.

Isima

Christine FORCE 79

ÉTATS ORTHOGONAUX

veille décroché

batterie
chargée

bouton rouge court

bouton vert

quand
charge<C1

batterie
en charge

quand charge
>C2

branchement

marche

marchearrêt
Bouton vert

Bouton rouge long

Charge nulle

batterie
faible

téléphone mobile

L’objet se trouve
dans plusieurs

sous-états
simultanément

Isima

Christine FORCE 80

Attente Arrêt

basculer

basculer

Attente

boutonEnfoncé /send Télé.basculer

Communication entre objets

VIE DES OBJETS

en panne

en état
de

marchecréer
(immatriculation)

casse réparation

destruction

Création et de destruction d’objet
attente Télé.

basculer

OU

voiture

zappeur

TV

zappeur

bouton
enfoncé

Isima

Christine FORCE 81

DIAGRAMMES D'ÉTATS

Représentation de comportements complexes :

Analyse : comportement d'un objet m étier,

Modélisation d'un comportement prévu,

Conception : comportement des objets d’une classe d u

programme.

Représentation de tous les états et seulement les é tats et les

transitions valides des objets de la classe.

Si pas de transition pour un événement X, l’objet ne réagit

pas à cet événement dans cet état.

Pas de diagramme à moins de 3 états.

Isima

Christine FORCE 82

IMPLÉMENTATION

Instructions de type selon ("switch") imbriquées : ma nière

directe qui devient vite peu lisible.

Patron de conception State : une classe pour chaque é tat, un

contrôleur délègue le traitement de chaque événement à la

classe Etat.

Table contenant les états et les actions à effectuer lors des

transitions.

Isima

Christine FORCE 83

LE PATRON STATE

Context
State

ConcreteStateBConcreteStateA

setState()
request ()

handleRequest()- state

handleRequest() handleRequest()

définit la classe
abstraite pour
encapsuler le

comportement
associé avec un
état particulier

du contexte

chaque sous-
classe ConcreState

implémente un
comportement

associé avec un
état du contexte

Isima

Christine FORCE 84

EXEMPLE : LE LIVRE

Livre EtatLivre

EtatDisponible EtatEmprunté EtatNonRendu

setEtat(EtatLivre)
emprunt()
restitution()
vol()
aprèsUnMois()
aprèsUnAn()

emprunt()
vol()*

restitution()
vol ()
aprèsUnMois()*

restitution()
aprèsUnAn()*

Le patron État (State)

(*) les autres méthodes sont vides ou lèvent une ex ception

emprunt()
restitution()
vol()
aprèsUnMois()
aprèsUnAn()

le contexte a
une méthode
pour chaque
événement,
elles ne font
que déléguer

Chaque classe
concrète fournit
le comportement
de l’objet quand
il se trouve dans

l’état
correspondant

Isima

Christine FORCE 85

EXEMPLE : LE LIVRE

après 1 anÉtat finalnon rendu

restitutiondisponiblenon rendu

après 1 moisnon renduemprunté

restitutiondisponibleemprunté

volNon rendudisponible

empruntempruntédisponible

ActionGardeÉvénementÉtat cibleÉtat source

Table des états : on peut construire un interpréteu r qui utilise la table à
l’exécution : plus de travail au départ, mais plus de souplesse.

Isima

Christine FORCE 86

EXERCICE

Logiciel pour gérer une station service :

Avant de pouvoir être utilisée par le client, chaqu e pompe à essence

doit être armée par le pompiste. La pompe est alors prête, mais ce

n’est que lorsque le client appuie sur la gâchette du pistolet que

l’essence est pompée (servie). Si le pistolet est s ur son support,

même si la gâchette est pressée, l’essence n’est pa s pompée.

La distribution d’essence au client est terminée qu and celui-ci remet

le pistolet sur son support. Le débitmètre fournit alors la quantité

d’essence distribuée.

Le client peut payer en liquide, par chèque ou par carte. Le système

enregistre le montant et le mode de paiement. En fi n de journée les

transactions sont transmises au système comptable d e la société.

Si le niveau de la cuve correspondant à une pompe es t inférieur à 5%

de la capacité maximale, la pompe ne peut plus être armée.

Isima

Christine FORCE 87

Appareil Photo
On souhaite modéliser les fonctions d’un appareil p hoto numérique:

Lorsque l’appareil est allumé, il se trouve en mode normal avec flash
désactivé.

Un bouton mode permet de passer du mode normal, au mode paysage, au
mode portrait puis à nouveau au mode normal (boucle) .

Le bouton flash permet d’activer le flash automatiq ue, si on appuie à
nouveau sur ce bouton flash, l’appareil supprimera également les yeux
rouges, puis sur une nouvelle pression, le flash se trouve désactivé (boucle).

Pour prendre une photo, il y a un gros bouton spéci fique, lorsqu’il est
appuyé l’appareil réalise la photo (la stocke en mém oire).

Il existe aussi un bouton pour la mise au point, lo rsque celui-ci est appuyé
l’appareil effectue une phase de mise au point qui dure une seconde.

L’appareil dispose d’un bouton de zoom avant et d’u n bouton de zoom
arrière. En restant appuyé sur le bouton de zoom ava nt, l’appareil avance son
zoom (jusqu’à une position maximale), on relâche ce bouton dès que le
zoom est satisfaisant (ou lorsque le zoom ne peut p lus avancer). Le bouton
de zoom arrière reprend le même principe.

Isima

Christine FORCE 88

Chapitre 5

LES DIAGRAMMES

DE CAS

D'UTILISATION

(Use Case Diagrams ou UC)

Isima

Christine FORCE 89

DIAGRAMMES
de CAS

d’UTILISATION
(UC)

DIAGRAMMES DE CAS D’UTILISATION

SPECIFICATION
DES BESOINS

ANALYSE

CONCEPTION
de l’architecture

TESTS

IMPLEMENTATION

Isima

Christine FORCE 90

RÔLE DES CAS D’UTILISATION

Modèles de Classes
et d’Objets

Dynamique
des Objets

Scénarios
Fonctionnels

Modèle des
Processus

MODÈLE du
DOMAINE

MODÈLE
TECHNIQUE

CLASSES FONCTIONS

DIAGRAMMES
DE CAS

D’UTILISATION

Les UC servent à recueillir la
définition des besoins

exprimés par les utilisateurs

Isima

Christine FORCE 91

L'EXPRESSION DES BESOINS EST UNE TACHE DIFFICILE

L'utilisateur au
moment de
l'expression
des besoins

L'utilisateur lors
de la revue

d'analyse

L'utilisateur
après lecture

des documents
de conception

L'utilisateur
le jour de

la livraison
et installation

Isima

Christine FORCE 92

UN PROBLÈME DE COMMUNICATION

� Expertise, jargon du métier
� Indécision, opinion changeante
� Besoins ambigus,
� Éléments manquants

� Schémas souvent
incompréhensibles pour les
non initiés.
� Langage énigmatique
� Descriptions longues et
fastidieuses

Isima

Christine FORCE 93

DIFFICULTÉS

Définir de QUOI les utilisateurs ont vraiment besoin :
Poser le bon problème,

Ne pas laisser les utilisateurs se mêler de réalisatio n,

Ne pas inventer des fonctions pour le plaisir.

Bannir toute considération de réalisation lors des
premières rencontres,

Comprendre le besoin de manière globale :
Flot incommensurable d'informations (il faut que…)

Contradictions entre les utilisateurs.

Besoins mouvants.

Isima

Christine FORCE 94

LES CAS D’UTILISATION

Les cas d’utilisation constituent une approche
concrète.
Les analystes ont souvent utilisé des scénarios
pour comprendre les besoins.
Ces scénarios étaient traités de manière
informelle et rarement documentés.
L’approche par les Cas d’Utilisation place les
scénarios au premier plan dans les projets.
La démarche est commune aux m éthodes objets
et aux m éthodes traditionnelles.

Isima

Christine FORCE 95

EXEMPLE

Acteur : rôle
joué par un
utilisateur
vis à vis du
système à
concevoir

sujet

consulter
solde compte

Client

retirer de
l’argent

éteindre/allumer
le distributeur

Distributeur de Billets

ravitailler le
coffre

Technicien

Acteur
secondaire

UC - Définition : objectif ou service que le
système doit remplir, motivé par un besoin
d'un ou plusieurs acteurs.

Isima

Christine FORCE 96

QU’EST CE QU’UN CAS D’UTILISATION ?

Représente une communication typique entre un
utilisateur et un système informatique,

Identifie une fonctionnalité visible de l’utilisateu r.

S’occupe d’un objectif élémentaire de l’utilisateur .

Décrit la communication (données, événements)
entre les entités extérieures et le système à
concevoir.

Le diagramme n'est qu'une "table des matières".

Isima

Christine FORCE 97

ADOPTER LE POINT DE VUE DE
L’UTILISATEUR

Un Cas d’Utilisation modélise un service rendu à un utilisateur
par le système.

Exemple, un traitement de texte, objectifs de l’uti lisateur :

� “Réaliser une présentation agréable pour un document ” .

� “Rendre une présentation similaire à une autre”.

Solutions de l’informaticien (appelées interactions s ystème) :

� “ Définir un style ”

� “ Changer un style ”.

� “ Copier le style d’un document vers un autre ”.

Une interaction (interne au) système correspond à une f onction
du logiciel du point de vue de l’informaticien,

Ce sont des décisions à reporter le plus tard possible.

Isima

Christine FORCE 98

SCÉNARIO

Un scénario est une séquence particulière
d’enchaînements s’exécutant du début à la fin du cas
d’utilisation.

Un cas d’utilisation contient en général un scénario
nominal (le cas général) et plusieurs :

Scénarios alternatifs qui se terminent normalement
(les cas particuliers),

Scénarios d’erreur qui se terminent en échec.

Un cas d’utilisation est un ensemble de scénarios r eliés
par un but commun du point de vue de l’utilisateur

Isima

Christine FORCE 99

ACTEURS

Pour trouver les acteurs, on cherche :

Quelles sont les principales tâches de chaque acteur ?

L’acteur a-t-il à lire, écrire, modifier une information du
système ?

L’acteur doit-t-il informer le système de modificatio ns
extérieures ?

L’acteur doit-t-il être inform é de modifications internes ?

Quels sont les acteurs secondaires ?

Y a-t-il des acteurs systèmes (d’autres logiciels

en interaction) ?

acteur
système

on associe un cas d’utilisation à chaque
suite d’événements initiée par un acteur.

Isima

Christine FORCE 100

Identifier
client

inclut

Client
Banque

inclut

(include)

étend
(extend)

Porteur de
cartes

déposer
chèques

déposer
liquide

Système

Autorisation

GAB

RELATIONS ENTRE UC

Syst Info
Banque

Acteurs
systèmes

retirer de
l’argent

consulter
solde

compte

déposer de
l’argent

Retirer avec
stock de

billets
insuffisant

inclut

Isima

Christine FORCE 101

RELATIONS ENTRE UC

Factorisation de comportements communs à plusieurs cas
d’utilisation mais :

intention différente,
liaisons différentes avec les acteurs .

U1 inclut U2 : U2 est un sous cas appelé en plusieurs points.
U2 étend U1 : le comportement de U2 contient celui de U1 :

U2 réalise quelque chose de plus que U1.
un acteur réalise le cas d’utilisation de base et to utes les
extensions qui se présentent.

U1 généralise U2 : le comportement de U2 hérite celui de U1
(vrai aussi pour les acteurs).
Etend : indique les variations d’un comportement norm al (les
cas particuliers importants).
Inclut ou Généralise s’utilisent pour éviter les répét itions dans la
description détaillée des UC.

Isima

Christine FORCE 102

POINT D’EXTENSION

Une extension peut
intervenir à un point
précis du cas étendu.

On l’indique dans un
compartiment du cas
d’utilisation,

avec une contrainte
indiquant le moment où il
intervient.

On peut indiquer une
condition dans une note.

GAB

vérifier
solde

étend

retirer de l’argent

Point d’extension :
vérification solde

{après avoir demandé
le montant}

si montant > 100 ∈∈∈∈

Porteur de
cartes

Isima

Christine FORCE 103

GROUPEMENT DES CAS D’UTILISATION

client

maintenance

sécurité

transaction

A B

Pour maitriser la
quantité et la complexité
des UC, on les répartit
en plusieurs conteneur,
que l’on regroupe en
paquets.

Isima

Christine FORCE 104

EXEMPLE

Maintenance

recharger
distributeur

récupérer
cartes
avalées

récupérer
Chèques
déposés

Opérateur

transactions

Sys Info
Banque

Opérations client

retirer de
l’argent

consulter
solde

déposer de
l’argent

Client
banque

Opérations non client

retirer de
l’argent

Porteur
de carte

Sys
Auto

On peut donner le
même nom à deux cas
d’utilisation différents
s’ils n’appartiennent
pas au même paquet.

service

...

Isima

Christine FORCE 105

DIAGRAMME DE CONTEXTE STATIQUE

Système
GABPorteur de carte

client

Syst.
Info Banque

Reti rer de l’argent

déposer, consulter

inform
er

L’ensemble des UC peut se représenter dans un diagr amme
d'activités (appelé diagramme de contexte).

Système
Autorisation

consulter

Isima

Christine FORCE 106

DESCRIPTION DES UC
(sommaire d’identification)

Titre : Retirer de l’argent

Résum é : ce cas d’utilisation permet à un porteur de carte (n on client
de la banque) de retirer de l’argent, si son crédit he bdomadaire le
permet.

Acteurs : porteur de carte (principal), système d’autorisation
(secondaire)

Date de création, date de mise à jour, version, respons able, etc.

On peut ajouter :

EXEMPLE

Fréquence d’exécution, sécurité, caractéristiques des acteurs,
besoins en ergonomie…

Isima

Christine FORCE 107

DESCRIPTION DÉTAILLÉE
(description des scénarios)

Un cas d'utilisation = un processus complet lié à
l'acteur principal (déclencheur) :

Pré-conditions : contraintes sous lesquelles le cas peut
démarrer,
Enchaînement nominal :
� ex : connexion + calcul + impression...

Enchaînements alternatifs et d’erreur,
Post-conditions : contraintes après la fin du cas d’ utilisation,

Enchaînement = une liste où chaque ligne est :
Un message entre un acteur et le système,
Une activité réalisée par le système.

Isima

Christine FORCE 108

CAS D'UTILISATION
"retirer de l’argent "

pré-conditions : la caisse du GAB est alimentée.

aucune carte ne se trouve déjà dans le lecteur.

Scénario nominal :
1. Le porteur de carte introduit sa carte dans le lect eur.

2. Le GAB vérifie si la carte est une carte bancaire.

3. Le GAB demande au porteur de saisir son code.

4. Le GAB compare le code saisi avec celui de la carte .

5. Le GAB demande une autorisation au Sys. d’autorisat ion global

6. Le Sys.Auto. Donne son accord et fournit le solde h ebdomadaire.

7. Le GAB demande au porteur le montant du retrait…

Post-conditions : la caisse du GAB contient moins de billets qu’au

début du scénario et une transaction a été enregistr ée.

Isima

Christine FORCE 109

CAS D'UTILISATION
"retirer de l’argent "

Enchaînement alternatif :
A1 : code d’identification provisoirement erroné : d émarre au point 5 du

scénario nominal.
6. Le GAB indique au porteur de carte que le code est erroné pour

la 1ère ou la seconde fois.
7. Le GAB enregistre l’échec sur la carte

Le scénario nominal reprend au point 3.

Enchaînement d’erreur :
E1 : carte non valide : démarre au point 2 du scéna rio nominal.

3. Le GAB indique au porteur que la carte n’est pas va lide (illisible,
périmée…) et la confisque. Le cas d’utilisation est terminé.

E2 : code d’identification définitivement erroné …

Isima

Christine FORCE 110

DÉMARCHES DE CONSTRUCTION

Isima

Christine FORCE 111

BESOINS NON FONCTIONNELS

Les UC permettent de spécifier les besoins fonction nels d’un

système logiciel.

Les besoins non fonctionnels sont des critères de qua lité, pour

chaque service et pour le système global (norme ISO 91 26) :

FACILITÉ D’UTILISATION : ergonomie, esthétique, fac ilité

d’apprentissage, cohérence de l’IHO, de la document ation et du

matériel de formation.

FIABILITÉ : fréquence et sévérité des fautes, facilit é de reprise après

panne, prédictibilité et précision des résultats.

PERFORMANCE (rendement) : temps de réponse, charge, temps de

récupération après erreur, quantité de mémoire.

MAINTENABILITÉ : testabilité, évolution du système a près livraison.

Isima

Christine FORCE 112

MEDUSE (LE RETOUR)

La médiathèque de l’Université des Schtroumfs Erudit s (USE) possède des
ouvrages. Ils peuvent être des livres, des CD ou de s DVD qui existent en plusieurs
exemplaires. Les informations à stocker sur un ouvra ge dépendent de son type.

La médiathèque est gérée par des documentalistes et est fréquentée par des
lecteurs. Ces lecteurs sont des étudiants de l’USE, des enseignants ou des
extérieurs. Ils peuvent emprunter 5 ouvrages au max imum lorsqu’ils sont inscrits.
Un lecteur ayant commis des abus (ouvrages rendus e n retard, détériorations…)
peut être interdit d’emprunt (durée décidée par le documentaliste).

Pour pouvoir être emprunté, un exemplaire doit être disponible (non emprunté,
non réservé). Chaque emprunt a une durée limitée à 4 semaines.

Un exemplaire emprunté peut être réservé par un autre lecteur, cette réservation
reste effective pendant 2 semaines après la date de retour du livre. Passé ce délai
la réservation est annulée.

Le documentaliste peut ajouter des ouvrages ou des exemplaires d’un ouvrage
dans MEDUSE, il peut également en supprimer (perte, vieillissement…).

Seul le documentaliste peut exécuter les mises à jou r des ouvrages, des lecteurs
et des emprunts. Pour chaque exemplaire on conserve l’emprunteur courant.

Les lecteurs effectuent des recherches sur la disci pline, des mots clés, l’auteur,
le titre, la date de parution... Pour cela ils util isent MEDUSE en consultation.

Isima

Christine FORCE 113

EXERCICE 2 : POMPE À ESSENCE

Un logiciel pour gérer une station service a le fon ctionnement suivant :

Avant de pouvoir être utilisée par le client, chaqu e pompe à essence
doit être armée par le pompiste. La pompe est alors prête, mais ce n’est
que lorsque le client appuie sur la gâchette du pis tolet que l’essence
est pompée (servie). Si le pistolet est sur son sup port, même si la
gâchette est pressée, l’essence n’est pas pompée.

La distribution d’essence au client est terminée qu and celui-ci remet le
pistolet sur son support. Le débitmètre fournit alo rs la quantité
d’essence distribuée.

Le client peut payer en liquide, par chèque ou par carte. Le système
enregistre le montant et le mode de paiement. En fi n de journée les
transactions sont transmises au système comptable d e la société.

Si le niveau de la cuve correspondant à une pompe es t inférieur à 5% de
la capacité maximale, la pompe ne peut plus être arm ée.

Isima

Christine FORCE 114

Chapitre 6

LES DIAGRAMMES DE SEQUENCES

Isima

Christine FORCE 115

COMPORTEMENT DES OBJETS

Pour monter ou concevoir le comportement des objets, on a :

Les diagrammes d’États : comportement d' une classe.

Les diagrammes d‘interactions : échanges de messages entre
plusieurs objets , 2 types :

Diagramme de Séquences,

Diagramme de Communication,

Diagrammes d’Activités : description d’un processus.

À UTILISER PARTOUT OÙ ON EN A BESOIN :
domaine, exigences, conception détaillée…

F2 F3

Isima

Christine FORCE 116

DIAGRAMME DE SEQUENCE SYSTEME =
DOCUMENTATION DES CAS D'UTILISATION

:GAB :Sys Auto

Porteur de carte

introduction carte
demande code
code (valeur)

demande autorisation

Autorisation (solde)
demande montant
Montant (valeur)
demande ticket

OK
éjection carte

récupération carte
éjection billets

récupération billets

Les labels de
flèches sont

des événements
du domaine de

l'application
ou des

informations
échangées

Système vu
comme une
boite noire

Message
avec valeur

On ne
distingue

pas flux de
contrôle et

flux de
données

L'interface et
l‘acteur se
confondent

exemple du chapitre précédent

Isima

Christine FORCE 117

INCLUSION D’UN CAS D’UTILISATION

ConsulterCompte

« inclut »

afficherSolde

Etc.

UC122
Identifier

ClientClient

: GAB

La relation « inclut » des cas d’utilisation permet de structurer les diagrammes

Isima

Christine FORCE 118

DIAGRAMME DE SEQUENCES DE REALISATION
EXEMPLE HYPER BASIQUE

Dans une application d’achats en ligne, la préparati on des
commandes est lancée via l’IHO de l’appli.
Le client a commandé plusieurs articles : chaque arti cle fait
l’objet d’une ligne de commande.
Pour chaque ligne de commande, il faut vérifier que l’ article est
en stock en quantité suffisante (le cas sinon n’est pas traité ici).
Pour chaque article livré, si le stock est en dessou s du seuil
critique, on lance un réapprovisionnement.

Les « rectangles » sont des OBJETS, c’est-à-dire des
instances des classes de conception.
Ces objets peuvent être nomm és. On peut montrer plusieurs
objets de la même classe.
On peut utiliser une flèche de « retour » d’une m éthode
(seulement dans les cas ou un retour implicite n’est pas clair).

Isima

Christine FORCE 119

INTERACTIONS ENTRE OBJETS

Préparer ()

Préparer ()

estEnStock ()

BesoinDeRéapprovisionner ()

:Réappro-
visionnement

[vrai] new

:Livraison

:Fenêtre
Traitement
Commande

:Commande
:Ligne

Commande
:Article

EnStock

[enStock()=vrai]

new

miseAJour ()

Objets à
l'intérieur du

système
Appel d’une
méthode de
l’objet cible Itération

retour

condition

Auto-Délégation

Création

[vrai]

*

Isima

Christine FORCE 120

ITÉRATIONS EN UML 2.0

Préparer ()

:Fenêtre
Traitement
Commande

:Commande
:Ligne

Commande
:Article

EnStock
Itération

LOOP [Pour chaque ligne de commande]
Préparer ()

estEnStock ()

BesoinDeRéapprovisionner ()

:Réappro-
visionnement

[vrai] new

:Livraison
[enStock()=vrai]

new

[vrai]
miseAJour ()

Isima

Christine FORCE 121

LOOP [Pour chaque ligne de commande]

ALTERNATIVES EN UML 2.0

[sinon]

new

miseEnAttente ()

Préparer () estEnStock ()

BesoinDeRéapprovisionner ()

:Réappro-
visionnement

[vrai] new

:Livraison

:Ligne
Commande

:Article
EnStock

[vrai]

:Commande

miseAJour ()

new

ALT

:ProduitEnAttente

le « cadre
d’interaction » peut

représenter :
une itération (loop)
une alternative (alt)

une option (opt).

Isima

Christine FORCE 122

DIAGRAMMES DE SÉQUENCES ET PROCESSUS
CONCURRENTS

Les diagrammes de séquences distinguent deux catégo ries d’envoi
de messages :

Les envois synchrones pour lesquels l’émetteur est bloqué et
attend que l’appelé ait fini de traiter le message (méthodes),
Les envois asynchrones, où l’émetteur n’est pas bloq ué et peut
continuer son exécution (processus communiquants).

Exemple : objets vérifiant une transaction bancaire :
Lorsqu’une transaction est créée, elle crée un coor dinateur de
transaction pour l’ensemble des vérifications.
Ce coordinateur crée un certain nombre (ici 2) d’ob jets
vérificateurs, chacun responsable d’une vérificatio n. Les objets
vérificateurs peuvent être appelés de manière async hrone et ils
s’exécutent en parallèle.
Lorsqu’un vérificateur se termine correctement, il avertit le
coordinateur qui s’assure que tous les vérificateur s sont
terminés. lorsque tout est OK, un signal est envoyé à la
transaction.

Isima

Christine FORCE 123

PROCESSUS CONCURRENTS ET ACTIVATIONS

vérification : : succès

:Coordinateur
:Transaction

new

verif1:
Vérificateur
Transaction

verif2:
Vérificateur
Transaction

new

OK

tout
est
fait ?

OK

new

new

valide

tout est
fait ?

L’objet
s’auto
détruitEmpilement

d’activation

Activation

Message
asynchrone

Isima

Christine FORCE 124

vérification : : échec

PROCESSUS CONCURRENTS ET ACTIVATIONS

Échec

Destruction
des
vérificateursTransaction

invalide delete

Destruction d’un
autre objet

:Coordinateur
:Transaction

new

verif1:
Vérificateur
Transaction

verif2:
Vérificateur
Transaction

new new

new

Isima

Christine FORCE 125

:Acteur
objet : Classe

nouveau:Classe

appelDeMéthode ()

messageAsynchrone ()

retour ()

[garde] messageGardé ()

new

SYNTAXE

messag e avec délai

Période
d’activité

Création
d’objet

Autodélégation :
l’objet appelle

une de ses
méthodes

Destruction
d’objet

Ligne de
vie

Isima

Christine FORCE 126

Bibliothèque

Enregistrer
empruntdocumentaliste

Livre DVD CD

Lecteur
+état
/nbemprunt

*0..5
Ouvrage

Emprunt
+date

Exemplaire
+numéro
+état

*

Bibliothèque

*
*

Représenter l’emprunt d’un
exemplaire par un diagramme de

séquences détaillé.
On décide que l’accès à l’application
se fait par une interface graphique et
qu’une classe ControleurBiblio gère
les interactions entre l’interface et

les classes métier.

MEDUSE (LA VENGEANCE)

Isima

Christine FORCE 127

EXERCICE

Au lieu de faire la queue pour affranchir vos lettre s, vous préférez utiliser le
distributeur automatique, il faut :

Initialiser le distributeur (p. ex. un bouton sur l ’écran tactile)

Poser une lettre sur la balance,

Choisir le tarif d’expédition sur l’écran tactile,

L’écran affiche alors le prix et demande si d’autre s lettres sont à
affranchir.

Si oui, le même scénario se répète (à partir de pose r une lettre),

Sinon il faut payer : le montant total s’affiche et vous devez
introduire les pièces.

La monnaie est rendue et les vignettes sont délivré es.

NB : Représenter le distributeur sous forme de plus ieurs objets.

Isima

Christine FORCE 128

Distributeur

Balance Ecran MonnayeurClavier

Client*1 sert >

Vignette

1..*

achète
v

distributeur

vendre
vignettes

Isima

Christine FORCE 129

OÙ SOMMES NOUS ??

Identifier
clientinclutClient

inclut

stock de
billets

insuffisant

étend

Porteur de
cartes

déposer
chèques

dépose
r

liquide

Système

Autorisation

GAB

Sys Info
Banque

retirer de
l’argent

consulter
solde compte

déposer de
l’argent

GAB Sys Auto

Porteur de carte

introduction carte

demande code

code (valeur)

demande autorisation

Autorisation (solde)

demande montant

Montant (valeur)

demande ticket

OK

éjection carte

récupération carte

éjection billets

récupération billets

École

+École : string

Planning1

Récréation

+ExisteConflit()
Impossibilité

Synthèse

+Calculer()
+CompterRecres()
+CompterStatuts()

Période

+Jour : integer
+Debut : integer
+Fin : string
+Recouvrement()

Professeur

+Nom : string
+Statut : string

1..*

1

1

1..*

1

1

0..*

+AFaire()
1..*

1

1

surveille�

+localisation : string

�Contient

1

�emploie

�
a besoin

gère�
Veille décroché

Batterie
Chargée

Bouton
rouge court

Bouton vert

[charge
<C1]

Batterie
en charge

Quand charge
>C2

branchement

marche

Batterie
déchargée

<<Interface>>
COM.cariboulake.util:ObservableDistant

+ ajouterObserver()

+ effacerObserver()

<<singleton>>

Organisateur

+ ajouterPlanning()

+ supprimerPlanning()
+ compterP lannings()

+ getPlanning()
+ compter Récrés()
+getEquipe()

setEquipe()
setChangéEtAvertir ()

<<singleton>>
EquipeImpl

-mEcole:String
-Professeur:Vecteur
-morganis ateur:Or ganisateur

+ ajouterPr ofesseur()
+ supprimerProfes seur()
+ compterP rofess eurs()
+ getProfes seurs()
+ compterStatuts ()
+ getEcole()
+ setEcole()
getOrganisateur ()
setOrganisateur ()

-Jour :Day
-Début : Time

-Fin : Time

PériodeImpl

+ getJour()
+ setJour()

+ getHeure()
+ setHeure()

+ getMinute()
+ setMinute()
+ getDurée()

+ setDutrée()
chercherRecouvrement ()

PlanningImpl

-mLieu : Str ing
mRécréations : Vecteur
+ ajouterRécré()
+ SupprimerRécré ()
+ compterRécrés()

+ getRécré ()
+ supprimerToutesRécrés ()

+ getLieu()
+ setLieu()

RécréationImpl

+ affecterP rofesseur()
+ enleverProfesseur()

+ estSurveillée()
+ existeConflit()

<<Interface>>
COM.cariboulake.util:RemoteObserver

+metAJour ()

<<Interface>>
AffichageSynthèse

+ rafraîchir ()

AffichageSynthèseImpl

<<Interface>>
Serialization

Impossibili téImpl

<<interface>>

Professeur

+ ajouterImpossibi lité()
+ supprimerImpos sibilité()
+ compterImpossibilités()

+ getImpos sibilités()
+ compterSurveillances()

+ aFaire ()
+ getStatut()

+ setStatut()
+ getNom()
+ setnom()

*

1 *

1

1

1

*

1

1

1

1

*

Planning.

client

<<interface>>

Equipe

+ ajouterPr ofesseur()
+ supprimerProfes seur()
+ compterP rofess eurs()
+ getProfes seurs()
+ compterStatuts ()
+ getEcole()
+ setEcole()

<<implémente>>

Professeur Impl

-mNom : Str ing

-Statut : Float
-mImpossibilités : Vecteur
-mSurveillances : Vecteur

+ ajouterImpossibi lité()
+ supprimerImpos sibilité()
+ compterImpossibilités()

+ getImpos sibilités()
+ compterSurveillances()

+ aFaire ()
+ getStatut()

+ setStatut()
+ getNom()
+ setnom()

ajouterSurveillance()
supprimerSurveillance()

getSurveillance()
surveillanceAvecConflit ()
impossibilitésAvecConfl it ()

getEquipe()
setEquipe()

1

<<implémente>>

<<Interface>>

Organisateur

+ ajouterPlanning()
+ supprimerPlanning()

+ compterP lannings()
+ getPlanning()

+ compter Récrés()
+getEquipe()

<<implémente>>

<<implémente>>

<<implémente>>

<<Interface>>

Impossibili té

<<implémente>>

<<implémente>>

spécifie

<<Interface>>
Récréation

+ affecterP rofesseur()
+ enleverProfesseur()

+ estSurveillée()
+ existeConflit()

-mSurveillée:ProfesseurImpl

<<implémente>>

<<Interface>>
Distant

<<implémente>>

<<Interface>>
Planning

+ ajouterRécré()
+ SupprimerRécré ()

+ compterRécrés()
+ getRécré ()

+ supprimerToutesRécrés ()
+ getLieu()

+ setLieu()

*

<<implémente>>

<<implémente>>

COM.cariboulake.util:Observable

+ ajouterObserver()
+ effacerObserver()

setChangé()
avertirObserver()

+metAJour ()
+ rafraîchir ()

AffichagePlanning

Planificateur

-démarrer Serveur ()
-stopperServeur

1 1

organise

<<implémente>>

surveille

UnicastRemote
Object

LOOP
[Pour chaque ligne de commande]

[sinon]

new

miseEnAttente ()

Préparer ()
enStock ()

BesoinDeRéapprovisionner ()

: Réappro-
visionnement

[vrai] new

: Livraison

: Ligne
commande

: Article
en Stock

[enStock()=vrai]

: Commande

miseAJour ()

new

ALTERNATIVE

: ProduitEnAttente

Implémentation

Spécification des
besoins :

Cas d’Utilisation +
description détaillée

(texte ou diag de
Séquences système)

Analyse :
Diag. de Classes +
États-Transitions

Conception :
Classes +

Séquences +
États-Transitions

Isima

Christine FORCE 130

Chapitre 10

RETOUR SUR LE

DÉVELOPPEMENT

DE LOGICIEL

Isima

Christine FORCE 131

SYNTHÈSE : QU'EST-CE QU'ON A ?

DIAGRAMME OBJECTIF

Diagramme de
Cas d'Utilisation

Décrire le comportement du système du point de vue de l'utilisateur :
fonctionnalités du système, acteurs externes et leurs relations.

Diagramme de
Classes
et d’Objets

Représenter les classes et les relations entre classes :
Domaine : structure statique du système étudié ;
Technique : architecture du logiciel.

Diagramme de
Séquences

Décrire la chronologie des messages échangés :
objets, scénarios caractéristiques d'envoi de messages

Diagramme de
Communication

Décrire la communication entre les objets par l'envoi et
la réception de messages.

Diagramme
d'Etats

Décrire le cycle de vie des objets :
les états que traverse un objet pendant sa durée de vie.

Diagramme
d'Activités

Décrire les processus métiers de haut niveau ou
les actions d'une opération complexe

Diagramme de
Composants

Décrire les composants de la STRUCTURE du logiciel

Diagramme de
Déploiement

Représenter les différents sites qui supportent des composants

Isima

Christine FORCE 132

SYNTHESE : QU'EST-CE QU'ON A ?

Implémentation Comportement

Exigences

Structure

Isima

Christine FORCE 133

Classes du
programme

SYNTHÈSE : QU'EST-CE QU'ON FAIT ?

Classes du
domaine

ANALYSE :
Quel est le problème ?

CONCEPTION : Quelle est la solution ?

IMPLEMENTATION :

on fait ce que

l'on a dit

Objets
du monde

réel

Cas d’
Utilisation

Préparer (
)

:Fenêtre objet:
Classe

Diag. d'Interactions

Mais il y a aussi beaucoup de textes à écrire : défi nitions, commentaires,
explications, glossaires, dictionnaires de données… ����

Objets
logiciels

Isima

Christine FORCE 134

LE PROCESSUS UNIFIE

Piloté par les cas d’utilisation “ Use-case driven ”

Un logiciel existe pour servir des utilisateurs, po ur le construire on doit
connaître ce que ses utilisateurs veulent et ont be soin.

Les cas d'utilisation pilotent les développements c omme un conducteur
pilote une voiture. On peut lâcher les mains quelqu es secondes, pas plus.

ITÉRATIF ET INCRÉMENTAL

Les itérations sont des étapes dans le travail et l es incréments des
extensions du projet.

Centré sur l’architecture “ Architecture Centric ”

L'architecture est la forme qu'a le système.

l’architecture doit permettre la réalisation des ca s d’utilisation en tenant
compte de l’environnement (matériel, OS, SGBD, rése au…)

Basé sur les composants “ Component Based ”

Piloté par la prise en compte systématique et perman ente des risques
“ Risk driven”.

Isima

Christine FORCE 135

ANALYSE DES RISQUES

Objectifs

Anticiper les aléas qui menacent le projet

Mettre en place les mesures de préventions

� Pour que l’occurrence n’ait pas lieu

Prévoir les mesures de secours

� Pour atténuer les impacts si l’occurrence a lieu

Evaluer la gravité/occurrence :

� Gravité moyenne/ occurrence assez forte

� Gravité élevée / occurrence faible

Isima

Christine FORCE 136

(sous) projet

LE PROCESSUS UNIFIÉ
(RAPPEL)

Inception
(étude d'opportunité)

Élaboration Construction Transition

Exigences ���� ������������ ����

Analyse ���� ������������ ����

Conception ���� �������� ������������ ����

Implémentation ���� �������� ������������ ��������

Test ���� ���� ������������ ��������

Isima

Christine FORCE 137

INCEPTION

(OPPORTUNITÉ)

Quel système allons nous construire ? (10% des UC)

Est-on capable de le construire ? (faisabilité, délai s, coût)

Est-il opportun de le construire ?

Qu’est-ce qui pourrait mettre le projet en péril ? (risque s)

Quelles sont les frontières du système ?

Quelle pourrait être l’architecture ?

Comment planifier les itérations ?

Inception
(étude d'opportunité)

Élaboration Construction Transition

Exigences ���� ������������ ����

Analyse ���� ������������ ����

Conception ���� �������� ������������ ����

Implémentation ���� �������� ������������ ��������

Test ���� ���� ������������ ��������

QUOI ? avec QUI ? pour QUAND ? pour COMBIEN ?

Isima

Christine FORCE 138

ÉLABORATION
proposer et argumenter des
solutions au besoin exprimé

Pour chaque nouvel incrément :

Connaissance du m étier des clients (contexte),

Majorité des cas d'utilisation (80%),

Analyse des risques,

Modèle conceptuel,

Prototypes,

Modèle Physique (architecture, solution retenue pour
implémenter le modèle conceptuel et les UC).

Inception
(étude d'opportunité)

Élaboration Construction Transition

Exigences ���� ������������ ����

Analyse ���� ������������ ����

Conception ���� �������� ������������ ����

Implémentation ���� �������� ������������ ��������

Test ���� ���� ������������ ��������

Isima

Christine FORCE 139

CONSTRUCTION

Créer les composants : sources, scripts, puis exécuta bles.

Fournir une version ββββ de l'incrément en cours de

développement en plusieurs itérations :

Chaque itération est un mini-projet, ce qui permet de
remédier aux risques d’intégration et de tests en “ big
bang ”.

Chaque itération fournit un produit de qualité, intég ré et
testé.

Inception
(étude d'opportunité)

Élaboration Construction Transition

Exigences ���� ������������ ����

Analyse ���� ������������ ����

Conception ���� �������� ������������ ����

Implémentation ���� �������� ������������ ��������

Test ���� ���� ������������ ��������

Isima

Christine FORCE 140

TRANSITION

Mettre le système entre les mains de la communauté des
utilisateurs,

Améliorer les performances si nécessaire,

Réparer les défauts (mais pas de développement pour
ajouter des fonctionnalités),

Rédiger la documentation utilisateur,

Former les utilisateurs et intégrer les retours d'expérie nce.

Inception
(étude d'opportunité)

Élaboration Construction Transition

Exigences ���� ������������ ����

Analyse ���� ������������ ����

Conception ���� �������� ������������ ����

Implémentation ���� �������� ������������ ��������

Test ���� ���� ������������ ��������

Isima

Christine FORCE 141

JALONS

Inception :
définition des ambitions du projet,
estimation des coûts et des délais,
exigences décrites par les cas d’utilisation primaires ,
budget approuvé et fonds disponibles.

Elaboration :
architecture stable,
résolution des risques majeurs,
adhésion des décideurs (à l’architecture et la planifi cation)
évaluation des ressources consomm ées / prévisions.

Construction :
version assez stable pour être confiée aux utilisateurs
(rédaction d’un manuel) et accord des décideurs.

Isima

Christine FORCE 142

EXIGENCES

Diagrammes de Cas d'Utilisation (réunions, interview s),

Documentation détaillée des cas d’utilisation,

Diagrammes de séquences systèmes (scénarios caractéris tiques)

ou diagrammes d’activités,

Exigences non fonctionnelles (performance, ergonomie ,

portabilité, modifiabilité, fiabilité),

Prototypes (IHO au minimum).

Inception
(étude d'opportunité)

Élaboration Construction Transition

Exigences ���� ������������ ����

Analyse ���� ������������ ����

Conception ���� �������� ������������ ����

Implémentation ���� �������� ������������ ��������

Test ���� ���� ������������ ��������

Isima

Christine FORCE 143

ANALYSE

Modèle d'Activités M étier : diagrammes d'activités, décrivant
les processus de gestion et/ou industriels (existant s, futurs).

Modèle de Classes m étier,

Dictionnaire : responsabilité des classes, attributs, opérations,

Diagrammes d’états des classes d’analyse,

Validation par les experts du domaine.

Inception
(étude d'opportunité)

Élaboration Construction Transition

Exigences ���� ������������ ����

Analyse ���� ������������ ����

Conception ���� �������� ������������ ����

Implémentation ���� �������� ������������ ��������

Test ���� ���� ������������ ��������

Isima

Christine FORCE 144

CONCEPTION

Comment construire le logiciel ?

Identifier les classes qui vont faire partie de l’arch itecture.

Découpage de l’application en paquets (sous-système s).

Quelle technologie utiliser ?

Diagrammes de classes techniques : architecture du log iciel à
construire (design patterns),

Diagrammes d’Interactions : communication des classes pour
l'implémentation des cas d’utilisation,

Diagrammes d'États : comportement des objets du logic iel.

Inception
(étude d'opportunité)

Élaboration Construction Transition

Exigences ���� ������������ ����

Analyse ���� ������������ ����

Conception ���� �������� ������������ ����

Implémentation ���� �������� ������������ ��������

Test ���� ���� ������������ ��������

Isima

Christine FORCE 145

CONCEPTION

Activité de raffinement progressif (du général aux déta ils) :

Conception de l’architecture : identifier les sous-
systèmes

Spécification abstraite : identifier les services et les
contraintes de chaque sous-système.

Conception de l’interface (de programmation) entre
sous-systèmes.

Conception des composants.

Conception des SDD.

Isima

Christine FORCE 146

IMPLÉMENTATION

Diagrammes de Paquets, de Composants montrant les

classes fortement dépendantes,

Diagrammes d'interaction (séquences ou communication)

Diagrammes États-Transitions : description détaillée des

comportements,

Diagrammes de Déploiement.

Inception
(étude d'opportunité)

Élaboration Construction Transition

Exigences ���� ������������ ����

Analyse ���� ������������ ����

Conception ���� �������� ������������ ����

Implémentation ���� �������� ������������ ��������

Test ���� ���� ������������ ��������

Isima

Christine FORCE 147

METHODES AGILES

Scrum
http://www.scrum.org/

Agile Modelling
http://www.agilemodeling.com/

RAD : Rapid Application Modelling
http://www.rad.fr/

eXtreme Programming
http://xp-france.net/

Principes
organisation en équipes
retours rapides
gestion des changements
simplicité de conception
Qualité

Isima

SCRUM

Scrum n’est pas une m éthodologie, c’est plutôt un cadre à

l’intérieur duquel il est possible d’utiliser différen ts

processus et techniques.

Scrum adopte une approche itérative et incrémentale d ans

le but de

rendre le processus plus prévisible,

contrôler le risque.

Une itération en Scrum s’appelle un sprint .

Un sprint dure environ 1 mois.

Christine FORCE 148

Isima

Scrum : déroulement d’un sprint

Avant : réunion de planification (sprint planning meeting) ,
l’équipe décide de ce qui va être fait
� « Quoi ? » ���� carnet de produit (product backlog)

l’équipe détermine comment elle va développer les
fonctionnalités décidées
� « Comment ? » ���� carnet de sprint (sprint backlog)

Pendant : la mêlée quotidienne (daily scrum)
L’équipe se rencontre chaque jour pour une réunion
d’inspection et d’adaptation du processus (environ 15 mn),
Chaque membre de l’équipe présente ce qui suit :
� ce qu’il ou elle a accompli depuis la dernière mêlé e,
� ce qu’il ou elle va faire d’ici la prochaine mêlée,
� les obstacles à surmonter, s’il y a lieu.

La mêlée quotidienne am éliore la communication et
favorise la prise de décision

Christine FORCE 149

Isima

Scrum : déroulement d’un sprint

Après : revue du sprint (sprint review meeting) ,
l’équipe Scrum et les parties prenantes discutent de ce
qui a été fait pendant le sprint :
� Ce qui a été complété
� Ce qui n’a pas été complété
� Les problèmes rencontrés et leur résolution.

elles discutent également de ce qui devra être fait au
cours du prochain sprint.

Encore après : rétrospective de sprint,
inspecter le déroulement du dernier sprint du point de
vue des individus, des relations interpersonnelles, d es
processus et des outils.
� Succès, améliorations…

Christine FORCE 150

Isima

L’équipe Scrum (les rôles)

Le Scrum Master : « expert » Scrum
Guide l’équipe dans les pratiques et règles de Scrum.

Le propriétaire de produit (product owner)
Gère le carnet du produit,
Sélectionne et affecte les priorités aux fonctionnali tés,
S’assure de la valeur du travail de l’équipe.

L’équipe (team) : 7 personnes ± 2
transforme le contenu du carnet du produit en un sous-
ensemble de fonctionnalités livrable à la fin du spri nt.
Contient des membres aux compétences variées
(architecture, développement, contrôle qualité,
conception d’IHO, base de données…)
L’équipe s’organise elle-même.

Christine FORCE 151

Isima

Artefacts de Scrum

Carnet du produit (product backlog) :
liste des fonctionnalités, technologies, am éliorations et
correctifs qui correspondent aux changements à apporter
au produit lors des livraisons futures.
Chaque élément possède : une description, un niveau de
priorité et une estimation.

Graphique de progression de livraison (Burndown Chart) :
mesure ce qui reste à accomplir dans le carnet au fil du
temps.

Carnet de sprint (sprint backlog) :
Contient toutes les tâches nécessaires pour réaliser u n
sous-ensemble potentiellement livrable du produit.

Graphique de progression de sprint (sprint Burndown Chart) :
mesure l’avancement des tâches à réaliser dans le sprin t.

Christine FORCE 152

Isima

Christine FORCE 153

ACTIVITES DE SOUTIEN

Gestion de projet :
Planification, contrôle de la progression,

Gestion des ressources et du budget.

Gestion des configurations et des changements
Trace des éléments du développement (artefacts),

Gestion des demandes de changements.

Gestion de l’environnement : adaptation du processus a u
projet et fourniture d’outils logiciels:

Modélisation graphique et Développement (AGL),

Management des exigences,

Gestion des versions et des configurations,

Aide aux tests et Evaluation de la qualité.

Isima

Christine FORCE 154

LE PROCESSUS DE TEST

Test unitaire ,

Test d'intégration : cohésion,

Test de sous-système :

recherche des erreurs d’interface,

Test du système : vérification de l’adéquation aux besoins
fonctionnels et non fonctionnels,

Test d’acceptation (“ αααα”) : erreurs ou omissions dans la définition
des besoins = VALIDATION

Test dans les conditions définies par le client.

Isima

Christine FORCE 155

IMPORTANCE DU TEST

La qualité du test manuel repose sur la pertinence du testeur.

Même si le test de logiciel revient cher, l’absence de qualité peut

être encore plus coûteuse pour l’entreprise.

Le test n’ajoute pas de qualité, il permet de connaî tre l’état du

produit aux différents stades de son développement.

La création d’une équipe de test distincte exige un changement

radical de culture : ce n’est pas une pratique courant e de faire

vérifier son travail par quelqu’un d’autre.

Isima

Christine FORCE 156

TYPES DE TESTS

Tests “boîte noire” ou fonctionnels : scénarios déduits des
spécifications fonctionnelles.

Test aux limites ,
Tests de non régression,

Tests statistiques : données tirées aléatoirement dans le
domaine des entrées en supposant une répartition st atistique.
Tests “boîte blanche” ou structurels : exploitation systématique
des chemins du logiciel.
Test de charge : performance d’un système sous une charge
maximale (vérifier si le système peut supporter les tra fics de
pointe).
Test de stress : capacité d’un système à récupérer lorsqu’il est
poussé au-delà de ses limites

Isima

Christine FORCE 157

PROCESSUS DE TEST

Isima

Christine FORCE 158

TESTS FONCTIONNELS

PRINCIPE
Comparer les résultats obtenus avec les résultats a ttendus.
montrer non seulement qu'un logiciel fait ce qu'on attend de lui,
mais aussi qu'il ne fait pas ce qu'on en n'attend p as.

MÉTHODE
Déterminer des classes d'équivalence :
� Valeurs valides non extrêmes,
� Valeurs valides extrêmes (aux bornes),
� Valeurs spéciales,
� valeurs non valides…

REGLE
Archiver et Automatiser (tests de non régression).

Isima

Christine FORCE 159

CLASSES D'ÉQUIVALENCE

Une classe = les cas devant être traités identiquem ent
(1 test par classe)

Un test peut combiner plusieurs classes valides,
Il est nécessaire de réaliser un test individuel pa r classe invalide.

On identifie les classes en analysant la spécificat ion.
Pour chaque condition externe, on établit la liste des classes valides
et invalides.

COMPOSANT

classes d'entrée
incorrectes

classes d'entrées
correctes

classes de sortie

Isima

Christine FORCE 160

CLASSES D'ÉQUIVALENCE

exemple :
spécification : x doit être compris entre 0 et 999, et y entre 0 et
4 :

Jeux de tests valides (1 & 4 : X=10,Y=2)
(non compris les tests aux bornes)

Invalides (2 : X=-4, Y=3), (3 : X=2000, Y=2),
(5 : X=10, Y=-10), (6 : X=6, Y=6)

Condition externe Classes valides Classes invalides

X
(1)

0 ≤ X ≤ 999
(2) X<0

(3) X>999

Y
(4)

0 ≤ Y ≤ 4
(5) Y ≤ 0
(6) Y>4

Isima

Christine FORCE 161

GRAPHE CAUSE - EFFET

On identifie des sous-ensembles indépendants de la spécification :
Un graphe représentant la totalité de la spécificati on serait trop
complexe,

Les conditions sur les entrées (ou les classes d'éq uivalence) sont
identifiées et numérotées,
Les sorties produites sont identifiées et numérotée s,

C1 E1
identité

C1 E2

non

~

C1

E1

V

C2

(et)

C1

E1
V

C2
(ou)

C3
Symboles de base

Isima

Christine FORCE 162

Soit M le montant d’une proposition et D sa durée :
si M < M1 elle est recevable,
si M1 ≤ M < M2 et D < D1, elle est recevable.

GRAPHE CAUSE - EFFET

C1

I1

V

C2

C3

~
E1

E2

~

C1 : M < M1
C2 : M < M2
C3 : D < D1
E1 : proposition
recevable
E2 proposition non
recevable

Isima

Christine FORCE 163

GRAPHE CAUSE - EFFET

Pour extraire des cas de tests, il suffit de choisir pour chaque
ligne contenant un X, des données correspondant aux
combinaisons des causes associées.

Table de
Décision

C1 C2 C3 E1 E2

0 0 0 X

0 0 1 X

0 1 0 X

0 1 1 X

1 0 0 X

1 0 1 X

1 1 0 X

1 1 1 X

Isima

Christine FORCE 164

TESTS STRUCTURELS

Ne permettent de tester que ce qui figure dans le progra mme,
mais pas de trouver les oublis par rapport à la spécifica tion.

Tests unitaires : mesurer une couverture de test sur

Blocs d’Instructions (IB),

Chemins de Décision à Décision (CDD ou DDP ou branche s) =
transferts de contrôle qui résultent d’une décision,

Portions Linéaires de Code suivie d’un Saut (PLCS ou LCSAJ)

� Saut = transfert de contrôle qui donne lieu à une rupt ure
de séquence au cours de la lecture d’un source.

� PLCS = suite de nœuds du graphe de contrôle
commençant au point d’entrée ou à la cible d’un sau t,
finissant à la sortie ou à la cible d’un saut et ne
comportant aucun saut.

Isima

Christine FORCE 165

PLCS : exemple

Dénombrement :
sauts : arcs e, d, c
cibles d’un saut :
(2) (3) (-1)
PLCS :
� p1 : (1) -> (3) e
� p2 : (1,2,3) -> (-1) c
� p3 : (2) -> (2) d
� p4 : (1,2) -> (2) d
� p5 : (3) -> (-1) c
� p6 : (2,3) -> (-1) c

lire N

pour i de 1 à N

...

fait

fin

1

2

3

a

b

d

e

c

-1

Isima

Christine FORCE 166

PLCS : exemple

Jeux
d'essai

n=3

n ≤ 0

n=1

Chem. d'exécution
nœuds

1,2,2,2,3,-1

1,3,-1

1,2,3,-1

Chem. d'exécution
branches

a,d,d,d,b,c

e,c

a,b,c

Chem. d'exécution
PLCS

p4,p3,p6

p1,p6

p2

p1
p2
p3
p4
p5
p6

D1

X
X

X

D2

X

X

D3

X

JE
PLCS

100% instructions
100% branches 100% PLCS

D1

D2

D3

Isima

Christine FORCE 167

LIMITES DU TEST STRUCTUREL

Incapacité de démontrer que certaines parties de code sont
manquantes,

Impossibilité de détecter certaines erreurs sur les donn ées,

mais indispensables dans les domaines critiques.

A

pair

pair

impair

impair

B

pair

impair

pair

impair

S

0

1

2

3

1

2

lire (A,B)

x := A mod 2;
y := B mod 2;
S := 2 * x + y;

Isima

Christine FORCE 168

TEST DU TEST

Le semage de défauts (fault seeding : capacité des tests à trouver
les fautes)

On « sème » des défauts et on effectue les tests,

On compte le nombre de défauts découverts,

On estime le nombre de défauts restants.

La concurrence :
2 équipes différentes effectuent des tests,

On compte les défauts non communs découverts,

Les mutants (variante du semage de défauts):

On introduit des défauts pour créer des mutants,

Les mutants qui ont un comportement différent
sont « tués par le tests ».

Isima

Christine FORCE 169

TEST DES LOGICIELS OBJETS

Premier problème, trouver une unité indépendante de test :

Dans les systèmes structurés, chaque procédure ou
fonction peut être testée indépendamment.

En objet, une m éthode n'existe que par rapport à la classe
à laquelle elle est attachée.

On ne peut pas toujours tester une m éthode sans
l'appliquer à un objet.

Chaque objet possède un état, le contexte dans lequ el une
méthode est exécutée, est défini par ses param ètres et par
l'objet auquel elle est appliquée .

Isima

Christine FORCE 170

TESTS DE CLASSES

On teste des séquences de m éthodes appliquées à un objet.

Graphe d’héritage :

Tester une classe générale, puis les classes qui la
spécialisent, jusqu’aux classes feuilles.

� Mais attention : ce n’est pas parce qu’une m éthode
fonctionne bien dans une classe donnée, qu’elle
fonctionnera aussi bien une fois héritée.

� Il est difficile de savoir, parmi les tests sélection nés pour
la classe parente, ceux qui peuvent être éliminés e t ceux
qui doivent être rejoués.

Test des paires de fonctions : tous les enchaînement s
possibles de 2 m éthodes.

Isima

Christine FORCE 171

TESTS D’INTÉGRATION

Le test d’intégration consiste à vérifier que les cla sses
clientes utilisent les classes serveurs en conformité avec
l’interface offerte par la classe serveur.

Il faut parfois simuler le comportement d’une classe pour
pouvoir en tester une autre.

On explore les diagrammes de dépendances,

On exploite les diagrammes d’états :

Tester chaque transition d’état, et chaque méthode de la classe
dans chacun des états où elle est sollicitée.

Isima

Christine FORCE 172

CONCLUSION SUR LE TEST

Les m éthodes agiles préconisent une utilisation important e

du test unitaire.

Une famille de frameworks a été développée pour le tes t

unitaire de classes : Junit pour Java, Nunit pour la p late-

forme .NET…

On utilise les cas d’utilisation et les diagrammes

d’interaction associés pour ordonner et dériver les cas d e

test.

Isima

Christine FORCE 173

DIAGRAMMES UML ET VUES

Le modèle UML d’un système peut être étudié sous dif férentes
perspectives (vues).
Modèle UML = ensemble de diagrammes décrivant le sys tème
développé.
Vue = angle particulier sous lequel un participant voi t le système
ou combinaison de diagrammes intéressant un particip ant.

Utilisateur

structure
logique

implémentation

comportement environnement

Isima

Christine FORCE 174

LES VUES D’ UML

Vue utilisateur :

Définit les buts et objectifs des clients du systèm e
(services).

Définit les besoins et contraintes de la solution

Vue unificatrice des autres vues : elle sert de réfé rence à
leur validation.

Vue structure logique

Décrit les aspects statiques, représentant la structu re du
problème.

Identification des éléments du domaine (classes, at tributs,
paquets, etc.) et de leurs relations.

Utilisateur

structure
logique

implémentation

comportement environnement

Isima

Christine FORCE 175

LES VUES D’ UML

Vue comportement

Décrit les aspects dynamiques, du comportement du
problème et de sa solution.

Spécifie les interactions et collaborations entre
éléments de la solution.

Montre la décomposition du système en termes de
processus, d’interactions entre processus, de
synchronisation et de communication entre activités.

Utilisateur

structure
logique

implémentation

Compor
tement environnement

Isima

Christine FORCE 176

LES VUES D’ UML

Vue implémentation :

aspects structure et comportement de la solution.

réalisation, organisation en composants, contraintes d e

développement, etc.

Vue environnement :

aspects de structure et de comportement du contexte d ans

lequel la solution est réalisée.

ressources matérielles (disposition, nature, performance ,

etc.) et leur utilisation par le logiciel.

Utilisateur

structure
logique

Implé
mentation

comportement Environ
nement

Isima

Christine FORCE 177

IL N'Y A PAS DE MIRACLE

On n'a jamais toutes les informations du premier coup (les

itérations dans une phase sont nécessaires).

Les choses changent au cours du développement (surto ut

les exigences).

On n'éliminera pas tous les risques comme on l'espérait et

de nouveaux apparaissent.

Il faudra détruire des lignes de codes écrites pendant

l'itération précédente.

Isima

Christine FORCE 178

IL NE FAUT PAS :

Penser que Inception = Spécification, Élaboration = C onception,
Construction = Codage.

Penser que Élaboration = définir rigoureusement des modè les
traduits en code pendant la Construction.

Essayer de définir la plupart des besoins avant d'enta mer la
conception ou l'implémentation, etc.

Croire que la durée normale d'une itération est de 4 mois et non
de 4 semaines.

Penser que l'adoption d'UML implique beaucoup d'acti vités et
beaucoup de documents.

Essayer de planifier un projet en détail du début à la fin et de
prédire toutes les itérations.

Isima

Christine FORCE 179

IL FAUT ALLER VOIR :

En français :
uml.free.fr
www.iro.umontreal.ca/~dift6803/ (voir les transparents)
dept-info.labri.fr/~aimar/Enseignement/UML/cours.pdf
http://www.abrillant.com/doc/uml/

En anglais :
www.rational.com/uml
www.omg.org/uml/
www.cetus-links.org/ (lien UML)
www.sdmagazine.com/uml/
www.agilemodeling.com/essays/umlDiagrams.htm
bdn.borland.com/together/modeling/uml/
http://hillside.net/patterns/

Isima

Christine FORCE 180

BIBLIOGRAPHIE

Modélisation objet avec UML (2de édition) - Pierre-A lain Muller –
Eyrolles 2000
UML2 distilled: brief guide to the standard object modelling language
(3ème édition) - Fowler - Addison-Wesley 2003.
UML Guide de l'utilisateur - G. Booch, J. Rumbaugh, I. Jacobson -
Eyrolles 2000.
Le Processus Unifié de Développement Logiciel - I. Ja cobson –
Eyrolles 2000.
Introduction au Rational Unified Process - Philippe Kruchten - Eyrolles
2000.
UML2 et les Design Patterns - Craig Larman - Campus P ress 2005
UML2 en action - Pascal Roques, Frank Vallée - Eyroll es 2004
UML2 par la pratique - Pascal Roques - Eyrolles 2004
UML2 B. Charroux, A. Osmani et Y. Thierry-Mieg - Pea rson Education
2005
Tête la première : Design Patterns, E. Freeman – O’R eilly 2005

Isima

Christine FORCE 181

