METHODES ET
OUTILS DE
DEVELOPPEMENT
LOGICIEL

= casterman - geluck

Christine FORCE

Isima

n i Ghapitre 1

eo
| modeling language

—

INTRODUCTION AUX DEMARCHES DE
DEVELOPPEMENT LOGICIEL

EN INSISTANT ON OBTIENT TOUJOURS CE QU’ ON MERITE

C_‘e_qu'a promis _ Ce que voulait Ce qu'a specifié Ce qu'a compris Ce qu'a compris Ce qui a &té lvré Ce qui fonctionne
I'ngénieur commercial le client e client le chef de projet le concepteur Version 1 actuellement
\ersion 1 + pateh

Rebapfisée Viersion Béta

Christine FORCE 2

Isima

3 P

(urified,
modeling language

DEVELOPPEMENT LOGICIEL

DEMARCHES

Démarches de recueil des besoins, d'analyse et de co nception.
Méthodes de construction et d'obtention de la qualit e.

OUTILS

Outils de modélisation,

- Environnements de développement, AGL,
prototypage, gestion de versions et
configurations.

Langages.

mum) GENIE LOGICIEL

Christine FORCE 3

DEFINITIONS

OUTIL

UML : Unified Modelling Language, unification
(std OMG) des notations de modélisation objet (J.
Rumbaugh, G. Booch, |. Jacobson).

DEMARCHES

UP : Unified Process (Unified software
Development Process) : une démarche genérique
de déeveloppement de logiciel.

SCRUM, XP (eXtreme Programming) : dérivées de
UP, développement itératif et adaptatif par étapes
courtes (méthodes agiles...).

Christine FORCE

UNIFIED
MODELING
LANGUAGE

\7

Unified Process

Isima

Wll UN LOGICIEL CE N'EST PAS QUE DES
PROGRAMMES

OO0OO0OO0O000O0

O
O
O
O
O
O
O
O

OO0OO0000OO0O

@]
@]
O
O
@]
O
O
O
O

Supports
de livraison

TR ": 7
SR]
Sources |a a A a o ‘ Mlddle_ware
o | Outils
Manuels =
d'utilisation w7

Christine FORCE 5

£plis
JE DorS TENLEE

LE BRAS VERS
4 LE CENDRIER

/aju;_ Mo/
CIGARE
RACCOURCIT

les décideurs

e
CONMTACT
PRI A
DAsiS TouT oA 7

&

les utilisateurs

Contrats

)

Besoins

Logiciel

)

Besoins

Christine FORCE

I'informaticien

Isima

3 ?

|urified ¥
modeling language

DEMARCHE DE DEVELOPPEMENT

PROCESSUS DE
DEVELOPPEMENT DE

—

(Analyse)

—

—

Besoins des LOGICIEL Systeme
Utilisateurs Logiciel
Ay Ay

MODELE DESCRIPTIF MODELE PRESCRIPTIF

—)

(Technique)
Concevoir et

Besoins des Comprendre et 2
s il traduire les besoins construire la solution Systeme
Logiciel
Le monde est rempli de choses
3 3 N
Modele Modele Composants
d’Analyse Technique logiciels

=

L

Christine FORCE

Isima

- PROCESSUS DE
DEVELOPPEMENT LOGICIEL
(Cycle de vie des applications)

|urified ¥
modeling language

Processus (démarche) : description des difféerentes manieres
d'organiser les activités du développement logiciel.

Définir 'ordre des travaux pour un projet,

Spécifier les modeles et documents (artefacts) a
developper et leurs échéances,

Attribuer les responsabilités et les roles dans les
equipes,

Permettre de suivre et évaluer les produits et les
activités du projet.

Christine FORCE 8

Isima

|urified ¥ D
modeling language

LA CRISE!

logiciel livré, mais jamais
utilisé avec succes : 47%

logiciel payé
mais non livré
27%

logiciel utilisé
mais remanié
souvent puis
abandonné
19%

Christine FORCE

logiciel utilisé
tel que livre
2%

logiciel utilisé
apres
modifications
3%

LA NOUVELLE CRISE

Premiere crise : 1965

» Solutions? (NATO Summer School 1967) .
" « Software engineering »
" « Structured programming »
" « Top-down approaches »

Seconde crise : 2000

» Solutions? (OMG novembre 2000) :

" « La Programmation Objets ou la Programmation par
Composant ne constituent que des réponses tres part ielles
a la montee en complexité. Seules elles sont aujourd ‘hui
insuffisantes ».

® « MDA : Decouple neutral business models from variab le
platforms »

" « Transformations as assets »

Christine FORCE 10

Isima

|urified ¥ D
modeling language

LES METHODES DE CONCEPTION DE SYSTEME

On distingue deux grandes familles de m éthodes :
* Les méthodes procedurales ou structurées

= Separation des données (base de données) et des
traitements qui les manipulent (les programmes)

» Les méthodes orientées objets :

" Integrent au sein d’un objet (instance d’'une classe)
les données (attributs) et les comportements
(méthodes ou opérations).

" Les m éthodes objets ont remplacé progressivement
les m éthodes dites structurees.

= Elles apparaissent a partir des années 1988.

Christine FORCE 11

Isima

LES METHODES ORIENTEES OBJET
Chronologie des méthodes

|urified ¥
modeling language

OOA: Object Oriented Analysis - 1979 - Shlaer et Mellors
OOQOD: Object Oriented Design - 1981 - Booch
OMT : Object Modeling Technique - 1987 - Rumbaugh

HOQOD : Hierarchical Object Oriented Design - 1987 - Agenc e
Spaciale Européenne

OOSE : Object Oriented Software Engineering - 1990 - Jaco bson

OOA/OQOD : Object Oriented Analysis/Object Oriented Design -
1991 - Codd et Yourdon

OOM : Orientations Objet dans Merise-1993-Rochfeld

Christine FORCE 12

sima
:' unirfrif%eling Ianguagei

— TOUT NEST PAS SI SIMPLE...

Méme si les concepts objets sont stables et éprouvés ,'
Et qu'ils bénéficient d'outils et de langages perfor mants,

Méme si I'approche objets permet de concevoir les logi ciels
complexes et reésistants aux eévolutions :

L'approche objets est moins intuitive que l'approche

b

fonctionnelle,

b

L'application des concepts necessite une tres grande rigueur,

k]

Les langages objets ne guident pas l'utilisation de S concepts,

Comment distinguer un "bon objet" d'un mauvais ?

b

Christine FORCE 13

UML , UN LANGAGE POUR :

Décrire, visualiser et comprendre
le probleme,

Capturer et utiliser des connaissances pour la résoluti
probleme,

Communiquer avec les utilisateurs et les experts des
disciplines
Spécifier, montrer et construire la solution,

Documenter la solution,

on du

autres

Quel que soit le domaine d'application.

Christine FORCE

14

Isima

]]i CYCLE DE VIE ENV DU LOGICIEL

|urified ¥
modeling language

Demande systeme validé
i

()
N
/ogiciel testé

plan de validation

ETU D’
OPPORTU

cahier des
charges

4 imulatien, prototypes

nlan de vérification TESTS
ANALYSE ™ FoncTIONNELS
ﬁogiciel intégré
CONCEPTION pla .
—
pri s ! INTEGRATION

composants testés
A

| «6ONCEPTION | Dossiers

CODAGE

MISE AU POINT

UNITAIR

composants
mis au point

Dans ce modele le principe est simple : chaque phas e se termine a une date précise
par la production de certains documents ou logiciel S. Les résultats sont soumis a une

revue approfondie, on ne passe a la phase suivante g ue s'ils sont jugés satisfaisants.

Une étape ne remet en cause que la précédente, ce q ui s'avere insuffisant en pratique.

Christine FORCE 15

Isima

|urified ¥ D
modeling language

CYCLEENV

Pour :

»

E

»

Organisation simple et directe,
Décomposition du systeme en sous-systemes,
Vérification ascendante.

Contre :

o’

But de chaque étape = fabriqguer un produit
interm édiaire (document papier), soumis a
évaluation et utilisé en l'état comme point de
depart pour I'étape suivante.

= Nombreux documents créés dans un
environnement bureaucratique,

Rigidité : planification a long terme détaillée,
Hypothese erronee : les exigences sont stables,
Validation en fin de cycle (erreurs colteuses),

Effet tunnel (le client ne voit rien avant la fin de la
realisation).

Christine FORCE

16

Isima

3 P

|urified ¥
modeling language

EVOLUTIONS

Somewhere, something went terribly wrong

Processus incremental _ : développer par étape, en commencant les
fonctions clés.

Processus itératif : _réaliser les phases du développement en
plusieurs itérations.

Prototypage : valider les besoins en permettant a l'utilisateur de se
faire une idée de ce que sera le produit final.

Management des exigences : gestion des changements des
besoins des utilisateurs.

Réutilisation de composants __: code, conceptions, descriptions,
documents.

Gestion des risques __: prevoir et éliminer (diminuer) les risques
d’échecs ou de dysfonctionnement.

Christine FORCE 17

) PROCESSUS UNIFIE EN VITESSE | (9% |

LES ACTIVITES

SPECIFICATION| Qu'est-ce qU'ILS veulent
des exigences | faire avec ce logiciel ?

J'installe et J'explique

ANALYSE : :
o
[du domaine }Avec quoi ILS travaillent * [DEPLOIEMENT}
Comment | cONCEPTION TESTS
JE vais faire de I'architecture
ce logiciel ?

Super, ¢ca marche !
Chic, JE programme ! EMPLEMENTATION}

Christine FORCE 18

Isima

ﬁ'f PROCESSUS UNIFIE
s LES PHASES

(sousIPROJET ‘
Inception

(étude Elaboration Construction ransition
d' opportunlte

“ Exigences || * % X%

|Analyse * K K * ||
Conception \| * * % ok | *
| Implémentation || % K X X > Xk ” X X
| Test || * * o ok
Comportement Raffinement Satisfaction
global de l'architecture des
utilisateurs

Christine FORCE 19

IS|ma

") METHODES AGILES
(Scrum, eXtreme Programming, RAD)

Processus plus leger et flexible,
Focalisé sur la réalisation,
Avec des pratigues réduisant les colts du changemen t,
Basé sur I'expérience des chefs de projet :

+ Travail en équipe,

+ Livraisons frequentes,

+ Communication accrue avec le client,

* Relecture et nettoyage du code.
Simplicité avec pour regle : "Y're not gonna need it ! X
Boutons (des pratiques actuelles) tournés jusqu'a 10.

Christine FORCE 20

Isima

2 P

| unified, ¥
modeling language

Chapitre 2

DEpuS Al TENDANCE.
QUE JAI MIS I TN
LANTES VERTES o
i PENDANT LES HEURES
|
|

DE BurREAUV

Christine FORCE

21

Isima

>

Comme la plupart des
modeles UML, les
diagrammes de classes
s'utilisent & 2 niveaux

de I'architecture

Christine FORCE

ﬁ) DIAGRAMMES DE CLASSES
7
— Diagramme
Z} de classes
SPECIFICATION = ClemEhEe
DES BESOINS

ccccc Diagramme

AAE Z} de classes

== lechnique

CONCEPTION TESTS

IMPLEMENTATION

22

Isima

|urified ¥
modeling language

DIAGRAMME DE
CLASSES D’ANALYSE o

+
Décrire de fagon abstraite un ensemble d’objets,

Factoriser des éléements communs a un ensemble d’objets :
Décrire le domaine de définition d’'un ensemble d’obje ts,

|ldentifier les concepts : dresser une liste de choses ou d'idées

présentes dans l'environnement (le m étier) des utilisateurs,

Décrire les relations _ entre ces concepts (inclusion, utilisation,

communication, dérivation...).

Christine FORCE 23

Isima

eo
| modeling language

—

EXEMPLE : PLANIFICATION

O

A
1

&
o

Synthese

+Calculer()
+CompterRecres()
+CompterStatuts()

. = Plannin

Ecole 1 gere > 1.* g
+Ecole : string +localisation : string

1 _ 1

wemploie
Professeur v Contient

+Nom : string
+Statut : string SUfVe' 1 *
+AFaire() W, Qa —

1 Récréation

0.*
1 | +ExisteConflit()

Impossibilité

Période

+Jour : integer
+Debut : integer
+Fin : string

+Recouvrement()

Christine FORCE

24

Isima

3 P

|urified ¥
modeling language

DIAGRAMME DE
CLASSES TECHNIQUE

Il traduit le diagramme du domaine

en architecture du logiciel.
Il est beaucoup plus detaillé (cf. page suivante) .
Il donne des informations techniques (méthodes, att ributs)
Il contient souvent plusieurs modeles :
*» Modele d‘Interface Humain Ordinateur (présentation)
» Modele application (objets de contrdle, pilotage).
» Modele métier (les objets provenant de I'analyse).

» Modele d'acces aux données (requétes).

» Modele des classes persistantes (modéle relationnel ?).

Voir un exemple en fin de I'étude de cas

Christine FORCE 25

; . <<singleton>>
lal| <<singloton>> -——--- 1 Organisateur
Fguipeimpl | e cmccmmcmmmmmmmm e e 1 + ajouterPlanning())
i i Planificateur
-mEcole:Strin: implé | +supprimerPlanningd | 1 1 | Planificateur |
“ProtesseurNecteur SRR i +compterPlannings0
-morganisateur-Organisateuy i +getPlanning0 dé
] -témarrerServeur 0
+ajouterProfesseurrd | 0 [pateccamtmmt 0 Lo I~ <<mterface>> .— L . . _L___. _TTTTTTTT=TTTTS +compter Récrésl .
+supprimerProfesseurn <> Professeurimpl + putEanipen stopperserveur
:;::gmg:;:t:ﬁfursu 1 | -miem:String = [mE R St PR =S mASISa T TS : #setiquipel))
+compterStatuts 0 . COM.carinoulake.untii-Observahle #selGhangéEthvertir
+ getEcolel -mimpossibilités : Vecteur
+setEcolel) - mSurveillances : Vecteur +ajouterOhserverd T
getOrganisateur(+ajouterimpossibilité0 +effacerobserver 1 :
setOrganisateur 0 + supprimerimpossibilité0 #setChangél e
T + compterimpossibilités0 R # avertirobserver0 «“""""'Iem"»
I +getimpossibilités0 \ T |
! +compterSurveillancesD \ o ! organise | <<Interface>>
: +ﬂfa;re 0 0 - ‘“‘I'"""“"“"’» L----f------=---—+ || comcariboulake.utitRemotcObserver | _ _
+getStatut imolé i, B e T e gttt — /e e
1 +setStatutd ,, <<||nnll=l:wme>> : o :— i - 3 : : +metAlourD
1 +getNom0 ; ; i <<imnlé(neme>> ey Planningimpl S \ 1
: +setnomi g ;] 3 1l — \ [y
! # ajouterSurveillancen) i ; i \ | -mligu: String i
I # supprimerSurveillancel) - \ o mRécreéations : Vecteur \ | .
1 % getSurveillanceD — 1 Périodelmpl 1 - — | |
I getsurveillancel) 1 \ 1 - + ajouterRécrén o] 1
1 #survoMancofivecCenfii 0 1 -Jour:Day ‘! ==—=- +SubprimerRécrén T]
- # |m'nlnss_|h|:lllesnvenconﬂn 0 | -Début: Time ot +compterRécrésn i ol |
<<implémente>> : ::l!::;::[l 1 -Fin: Time el el +getRécré 0 - Lo : <<Interface>>
1 ! +getiour) \ +supprimerToutesRécrésQ RSN i 8
: 1 AffichageSynthése
1 : 1 +setiourl) \ +getlieul) - 1 ! -
1 i 1 +getHeureD \ +setlieud <<|mn|ememe>> 1 I + rafraichirQ
1 <<implémente>> surveille ! * Sellllflll'l![] 0 1 J : c
1 1 ; +getMinute) B 1 \ ‘
1 1 +setMinuteD e 1 : \] -
1 1 +getDuréel J —<interiacess 1 \ AffichagePlanning
P " 1 N [
! J +setbutréeq) Récréationimpl Planning 1 - < !
. 1 __ 1
: <<interface>> 7 #chercherRecouvrement(-mSurveilie:Professeurimpl +alouterRécren o TEN I k
1 Professeur 1 +affecterProfesseurn +SupprimerRécré 0 o 1 AffichageSynthéselmpl
1 +ajouterimpossibilité 0 <<iniplémente>> + enleverProfesseur0 : ““':l;"":w“s" 1 ol +methlour0) Planning.
1 +supprimerimpossibilité0 1 +estSurveiliéen getReécré I +rafraichird 5
1 i i + ToutesRécrés0 1 clont
1 +compterimpossibilités +existeConflit) supprimerTouteskecrest)) 1
1 +getimpossibilités0 ! ; +getlieud I,
1 + culqnlers"weillances(l I_ e . <<implémente>> + setlieul) :
! +aFaire 0 <>__ Impossibilitéimpl 1 4
+getStatutd e 1
N :elsmlul(l 1 spéciie ~ - i 1 <<Inerface>>
+getNomi » 0 1 | Organisateur |
. 0 i <<Interface>> b 1 [+aiouterPlanning0
<<interface>> L +semoml | <<impiémente>> Récréation ; 1 | +supprimerPlanning0
Enuipe ! R m— ¢ 1 | +comnterPlannings0
+ ajouterProfesseur() + enleverProfesseurt) 1 : . g:::m:'r‘:':;] o
+supprimerProfesseur(+estSurveilléeD 1 N AL
+ compterProfesseursl) + existeConflitl 1 1| +getEquined
+getProfesseurs <<Interface>> 1 1 T
+compterStamts0 (T T T T T T T T T T T T gl Impossibilité T 1 J !
+getEcolel) 1 | 1 1
+setEcolel) 1 : 1 |
1 1 1
1 1 1
| | i <<Interface>>
1 1 1 COM.cariboulake.util:ObservableDistant
J |
L — < +ajouteronservern
+effacerObserver

Isima

) PLAN DU CHAPITRE
-

| - CLASSES D'ANALYSE

|| - CLASSES TECHNIQUES

Il - EXERCICES

IV - DIAGRAMMES D'OBJETS

Christine FORCE 27

Isima | - CLASSES D’ANALYSE

k) I- CLASSES D’ANALYSE
s REPRESENTATION

Classe

attributs :
Gaulois

opérations

nom
fonction
en analyse on peut indiquer dateNaissance
(mais on ne le fait pas toujours)
les attributs et les opérations
fondamentaux de la classe.

combattre

exemple

—
Il s’agit de décrire les objets du métier de ['util isateur,
avec le point de vue et le vocabulaire de cet utili sateur.

But : comprendre comment le client travaille et
communiquer avec lui (pour vérifier que I'on a bien compris).

Christine FORCE 28

Isima | - CLASSES D’ANALYSE

B ASSOCIATIONS

eo
modeling language

—
est associée | ROIEB | ~.cce B
Classe B Classe A -
Classe A Réle A
travaille pour o employeur s
Personne Société Personne - Sociéeté
employé

Au choix : nommage de l'association ou nommage des roles (extrémités)

el

Le nom de l'association apparait en italique sur la ligne qui la symbolise,
'usage recommande de choisir une forme verbale act ive (travaille pour) ou
passive (est employé par). Le sens de lecture du nom est indique par un
triangle < » ou un signe < ou >,

Le role décrit comment une classe voit une autre cl asse, au travers d’'une
association (forme nominale).

Christine FORCE 29

| - CLASSES D’ANALYSE

OB) ASSOCIATIONS

=
* établissement étudiant
Parent Enfant _ o
Université Personne
employeur enseignant
Personne
* .
i Personnaly, conduire » oiture
parent enfant

Association réflexive

]

On peut avoir plusieurs associations

entre 2 classes a condition qu’elles
représentent des concepts différents. Personne Voiture

Le nommage des roles prend tout son

intérét lorsque plusieurs associations
relient deux classes. propriétaire véhicule

Christine FORCE 30

| - CLASSES D’ANALYSE

MULTIPLICITES
5
Classe Exactement 1
. 1 .
= cl Plusieurs gaulois = ~ Romain
aSS€ | (de 0 an) at »
= duit
. condui
Classe Delan v :
I optionnel
Classe P Char
M0 ~asse Spécifié 1
numeriquement tiré par
Y |43
Multiplicités
Cheval
Exemple

Christine FORCE 31

Isima | - CLASSES D’ANALYSE

A E CLASSES D’ASSOCIATION

|urified ¥
modeling language

*
Société n ! Personne
' A
« Clalsse Une. sociéeté emploie
d’association » plusieurs personnes.
Emploi Une personne peut étre

employée par plusieurs

salaire societés. L’attribut

"salaire" est porté
par I'association

Exemple de classe d’association

4
Les associations plusieurs a plusieurs (*-*) se reéif ient par des

classes d'associations qui permettent de décrire de s attributs
caractérisant le lien (elles ne modélisent pas des objets).

Christine FORCE 32

Isima

3 P

|urified ¥
modeling language

| - CLASSES D’ANALYSE

ASSOCIATIONS TERNAIRES

Professeur

Salle

Professeur

s

Etudiant

Salle

i

« association ternaire »
Cours

jour
heure

T=*

Etudiant

Christine FORCE

A

Les associations ternaires
sont souvent trés ambigués,
mais elles servent pour
esquisser le modele, par
exemple au début de I'analyse.
Il faut les transformer
en plusieurs associations
binaires (en créant des
classes d’association).

33

Isima | - CLASSES D'ANALYSE

'z ASSOCIATIONS

|
|urified ¥
modeling language

——
—

Les contraintes expriment les regles de validite, d e
cohérence ou de sémantique. Une contrainte est une
expression entre accolades :
{description de la contrainte}.

Il existe des contraintes prédéfinies par UML :

ordonne, sous-ensemble, ou exclusif (xor).
OCL (Object Constraint Language) permet de décrire
des contraintes complexes.

Homme
A
0.* | éleve . classe 0..1 0.1
i est marié | Y- Personne X
{sous | aV =
Personne | onsemple) i Classe B w7 Ol el
* e | i 0.1 pacsée
0.7 | délégué i classe | X
| | Femme [~ i
| q |
les delégués sont aussi des éleves L]

un personne peut étre mariée ou pacsée (mais pasle s?2)

Christine FORCE 34

Isima | - CLASSES D’ANALYSE

i)

|urified ¥
modeling language

ASSOCIATIONS

Remplacer une association (agrégation) par un attri but releve de
I'implémentation, non de la modélisation.

On évitera de le faire en analyse pour :

s Préserver le caractere bidirectionnel de I'associat ion.

» Reéveler les cardinalités.

» Faciliter la compréhension du modele par les non sp écialistes.

» Préserver I'aspect visuel convivial de la représent ation.

s |dentifier, grace au diagramme, I'impact que peut a voir le retrait
d’'une classe.

Critere : si 'on ne peut demander a un élément que sa valeur il s’agit
d’'un simple attribut, si I'on peut lui poser plusie urs questions, c’est un
objet.

Christine FORCE 35

2.) GENERALISATION/SPECIALISATION

| - CLASSES D’ANALYSE

=7

La généralisation UML est plus abstraite que I'héri

UML emploie le terme de généralisation pour désigne
relation de classification entre un élément général
élément plus spécifique. La généralisation est souv
en utilisant la relation d’héritage des langages ob
maniere de réaliser la classification, mais ce n’es

ent réalisée
jets. C’est une
t pas la seule .

r la
et un

tage.

A
En italique si
abstraite. A la Super-
main, on écrit Classe
« abstraite »

i

R

Gaulois

Sous-classe 1

Sous-classe 2

Guerrier

Druide

Barde

Christine FORCE

36

| i | - CLASSES D’ANALYSE

| cg,ll CLASSIFICATION/SPECIALISATION MULTIPLE
"

Une classe peut étre spécialisée selon plusieurs cr itéres simultanément.
Chaque critere de la généralisation est indiqué par un discriminant.

Il permet de spécifier les combinaisons cohérentes de sous classes.
Plusieurs sous-classes peuvent partager un méme dis criminant, elles sont
alors disjointes. Une instance dérivée d’'une super- classe ne peut étre
instance que d’'une seule sous classe avec le discri minant commun

. WDiscriminant
Veénhicule X
s Humain Machine
Propulsmn 4& 4&M|I|eu
| A
{inclusif}
A moteur A voile 4 Terrestre Marin Terminator
/
/
rcontrainte Spécialisation multiple :

une classe hérite de plusieurs classes

classification multiple :
un objet est instance de plusieurs classes

Christine FORCE 37

Isima | - CLASSES D’ANALYSE

Wll CONTRAINTES
——

Plusieurs contraintes peuvent étre appliquées aux r elations de
généralisation :

» La contrainte {disjoint} ou {exclusif} indique qu'u ne classe
descendante d’une classe A ne peut étre descendante gue d’'une seule
sous-classe de A (défaut).

» La contrainte {chevauchement} ou {inclusif} indique gu’'une classe
descendante d’une classe A appartient au produitc artésien des sous-
classes de la classe A. Un objet concret est alors construit a partir
d’'une classe obtenue par mélange de plusieurs super -classes.

» {incomplete} indique une genéralisation extensible.

» {complete} indique qu’'une instance est forcément d’ une des sous
classes (la super classe est alors abstraite).

Christine FORCE 38

Isima | - CLASSES D'ANALYSE

B ?

eo
| modeling language

Produit Produit

JAN

I I
Produit Produit Produit
Normal Dangereux Dangereux

|
Chien <} | _
Herbivore Carnivore
Cuisinier
, Travaill
\ Employé =" ! Restaurant
Travaill
R ravaille pour) Restaurant ﬁ A K
1 / Cuisinier Serveur D
Maitre d'Hotel
d’'Hotel

Christine FORCE 39

Isima | - CLASSES D’ANALYSE

) PRECISIONS

En UML, sauf si le contraire est spécifié explicitem ent, les hypotheses
par défaut sont :

» Héritage multiple : une classe peut hériter de plus ieurs super-
classes,

» Classification simple : un objet est instance d'une seule classe,

» Classification statique : un objet est créé a partir d'une classe et
n'en change pas.

Toutes les associations de la classe meéere s’appliqgu ent par défaut aux
classes dérivées.

Un héritage ne se justifie que si la classe deérivee possede au moins un
attribut, une méthode ou une association spécifique

Christine FORCE 40

Isima

3 ?

|urified ¥
modeling language

COMPOSITION

Classe
composite

<€p—— Composants

A

Composition
inclusion physique
d’'un objet dans un autre.
La durée de vie des
composants est
identique a celle du
composite (si le
composite est détruit,
les composants aussi).

| - CLASSES D’ANALYSE

1 | Village leon
_ @ —— Gaulois @ Hutte
Armorique
&L= Camp =
Romain 1 «|_'€ne
O *
Livie <@—— page
{ordonné}

L’élément composite est responsable de
la création, de la copie et la destruction
de ses composants.

Christine FORCE

41

Isima

3

...,’ AGREGATION

Classe Ko

7 Camion <>—={Chauffeur
| 'Tagrégation ou < est affecté
composition par référence
est une forme dégénérée . e
.g. Equipe <>—— Joueur
de la composition. _
C’est un lien entre deux <« appartient
classes dont les durées de vie
peuvent étre indépendantes. Propriétaire
L'agrégation indi ven .
ag egato. _dq.ue S_OU S Personne <>——- immeuble
une association impliquant (i
une subordination

L’agrégation est une
association transitive

Christine FORCE 42

Isima | - CLASSES D'ANALYSE

B ?

eo
| modeling language |

Personne [P—— Nom
+nom

Gestionnaire
- DeMémoire

Mémoire

: Gestionnaire
1 Personne Memoire % DeMémoire

Magasin Client

Mémoire

- gestionnaire
DeMémoire

ou

Pays K >—— Villes K >—|Habitants Memoire K> Gestionnaire

<> DeMémoire

Christine FORCE 43

Isima

| uriifie

?Tl E II - CLASSES DE CONCEPTION

modeling language

Nom de la classe

Attribut : type = valeur initiale

: type[= défaut],...)
. type de retour

Méthode (arguments }

signature?

=

En conception il s'agit
de représenter I'architecture
d’un logiciel, on montre donc
des détails d'implémentation.

Visibilité des attributs et des opérations

Nom de la classe

+ attribut public
attribut protégé
- attribut privé
~ att. visible du paquet
/ attribut dérivé
attribut de classe

+ méthode publique ()
méthode protégée ()
- méthode privée ()
méthode abstraite ()
méthode de classe ()

Christine FORCE

44

II - CLASSES DE CONCEPTION

% | CONCEPTION : TRADUCTION DES ASSOCIATIONS

-
Les associations se transforment en réferences
(échanges d’attributs entre classes)
Romain Char
Romain - identifiantRomain : String - numVéhicule : int
- nom : String - marque : String
conduit 1 - fonction : String - dateAchat : Date
v - dateNaissance : Date - propriétaire : Romain
: - véhicule : Char
Char . :
+ calculAge(dn:Date) : int + addTuning ()
+ get... + get...
+ set... + set...

Classe technique
(Conception du logiciel)

Classe d'analyse

Christine FORCE 45

II - CLASSES DE CONCEPTION

CLASSE D'ASSOCIATION

employeur employé
O *
Société - ~ Personne
0 * 1
£ 3l
Emploi
salaire
Analyse
Sociéte Emploi Personne
- societeld : String oild - Str - personneld : String
- emplois : collection<Emploi> - emploild : String - emplois : Collection<Emploi>
+ get - personne : Personne + get
+set... - société : Société + getm
- salaire : Integer
+ get...
+ set...

Conception

Christine FORCE 46

Isima II - CLASSES DE CONCEPTION

—t ASSOCIATION TERNAIRE
Professeur Salle
Sl EEET Salle - professeurld : String - salleld : integer
- cours : collection<Cours> - cours : collection<Cours>
gt
; + get... + get...
+ set... + set...
0.* =
« association ternaire »
Cours Cours
jour _
heure Etudiant - coursld : String
= : : - salle : Salle
e - Etudiantld : String - professeur : Professeur
. - cours : Collection<> - etudiants : Collection<>
Etudiant - .
+ - jour : Date
get... - heure
+ set...
Analyse + get...
+ set...
Conception

Christine FORCE 47

Isima

3 5

|urified ¥
modeling language

—= Associations navigables dans un seul sens

d:

1
cible Centurion pP<— >CampRomain
dirige »

\4

Source =<

Navigabilité restreinte
(on peut aller de la source vers la cible, mais non le contraire)

4
L’extrémité du coteé de la classe Centurion n'est pas navigable : cela signifie

gue les instances de la classe CampRomain ne stocke nt d’objet du type
Centurion. Inversement, la terminaison du coété de la classe CampRomain est
navigable : chaque objet centurion possede un attrib ut de classe CampRomain.

Christine FORCE 48

ma II - CLASSES DE CONCEPTION

18 ‘i EXEMPLE DE NAVIGABILITE RESTREINTE
'umrrl%delmg Ianguage
\
Gaulois
Gaulois - nom : String
R gagne > - fonction : String
nom- 1 Bataille - dateNaissance : Date
+fonctlor_1 - aGagne : Collection<Bataille>
+dateNaissance 0. * +lieu + getNom () : String
+date + setNom (nom : String)
Trophee + addBataille (babaorum : Bataille)
+type 0. Bt
20®
+valeur 2
Trophee
. - type : String
, 'Batallle - valeur : Integer

- lieu : String

- date : Date

- vainqueur : Gaulois + getType () : String

- trophees : liste<Trophee> + setType (type : String)

5 + getValeur() : Integer

+get... + setValeur (valeur : Integer)

+ set...

Conception

Christine FORCE 49

Isima

| urified i E
modeling language

II1 — EXERCICES
BRAIN STORMING

Préparer un diagramme de classes montrant au moins 10 relations entre
les objets suivants. Inclure les associations, les agrégations et les
genéralisations. Placer les multiplicités.

(a) école, terrain de jeu, proviseur, conseil de cl asse, salle de classe, livre,
éleve, professeur, cafétéria, ordinateur, bureau, ¢ haise, porte.

(b) chateau, douve, pont-levis, tour, fantome, esca lier, donjon, plancher,
couloir, salle, fenétre, pierre, seigneur, dame, cu isinier.

(c) Automobile, roue, frein, moteur, porte, batteri e, silencieux, pot
d’échappement.

Christine FORCE 50

B

modelmg Ianguage

PROBLEME 1 : MEDUSE

La médiatheque de I'Université des Schtroumfs Erudit s (USE) possede- Je
ouvrages. lls peuvent étre des livres, des CD ou de s DVD qui existent en plusieurs
exemplaires. Les informations a stocker sur un ouvra ge dépendent de son type.

- La médiatheque est gérée par des documentalistes et est fréquentée par des

lecteurs. Ces lecteurs sont des étudiants de I'USE, des enseignants ou des
extérieurs. lls peuvent emprunter 5 exemplaires au maximum lorsqu’ils sont
inscrits. Un lecteur ayant commis des abus (rendus en retard, détériorations...)

peut étre interdit d’emprunt (durée décidée par le documentaliste).

- Pour pouvoir étre emprunté, un exemplaire doit étre disponible (non emprunté,
non réservé). Chaque emprunt a une durée limitée a4 semaines.

- Un exemplaire emprunté peut étre réservé par un autre lecteur, cette réservation
reste effective pendant 2 semaines aprés la date de retour du livre. Passé ce délai
la réservation est annulée.

Le documentaliste peut ajouter des ouvrages ou des exemplaires d’un ouvrage
dans MEDUSE, il peut également en supprimer (perte, vieillissement...).

Seul le documentaliste peut exécuter les mises a jou r des ouvrages, des lecteurs
et des emprunts. Pour chague exemplaire on conserve I'emprunteur courant.

Les lecteurs effectuent des recherches sur la disci pline, des mots clés, l'auteur,
le titre, la date de parution... Pour cela ils util isent MEDUSE en consultation.

Christine FORCE 51

Isima ITI -IEXERCICES

3 5

|urified ¥
modeling language

-y Loy

PROBLEME 2 : RALLYE
CLERMONT IRKOUTSK (bl

Un véhicule est caracterisé par la marque, le modele et la cylindrée. Une
voiture est conduite par un pilote aidé d'un navigat eur. Une moto est
conduite par un pilote. Le pilote et le navigateur ont un numéro de licence
(affiliation a la fédération) et un numéro de dossar d (inscription a la course).

De plus, chaque vehicule est rattaché a une équipe (c aractéristiques : nom,
budget) qui lui fournit assistance et ravitaillemen t (une méme équipe peut
gerer plusieurs véhicules de categories differentes). L’équipe est composee
de membres officiellement inscrits auxquels on attr ibue un numéro de badge
et contient un responsable (joint a tout moment grac e a son numéro de
telephone mobile), des assistants techniques (spéci alités : meécanique,
logistique, etc.) et bien siOr les concurrents en ch arge d’'un véhicule de
I’équipe (toujours le méme).

Christine FORCE 52

Isima III - EXERCICES

| urified i D
modeling language

PROBLEME 2 : RALLYE
CLERMONT IRKOUTSK

La course se déroule par etapes. Chaque étape est ¢ aractérisée par un
numéro, le nom de la ville de départ et de la ville d’arrivée.

Types d’étapes : étapes de transition, étapes en lig ne et étapes speciales.

Les étapes de transition ne servent qu'a permettre a ux Vveéhicules de
transiter du point d’arrivee d’'une étape au point d e départ d’'une autre.
Elles ne rapportent pas de points.

Dans une étape en ligne tous les véhicules d'une mé me catégorie partent
en méme temps et doivent effectuer le méme parcours

Une spéciale est un groupe de courtes étapes contre la montre. Le temps
du vehicule est obtenu par la somme des temps de ch aque étape contre la
montre formant la spéciale.

Le classement des véhicule est fonction du temps de chaque étape.

Christine FORCE 53

Isima II1I - EXERCICES

| urified i D
modeling language

SOLUTION

Trouver les classes,
» éliminer les classes superflues (attributs),
* trouver un nom,
Trouver les associations (verbes ou roles),
Factoriser (généraliser),

Tester les chemins d’acces aux classes,
Itérer et affiner.

Christine FORCE 54

Isima II1I - EXERCICES

ez LES ERREURS A EVITER

Les classes redondantes (celles qui modélisent des ¢ oncepts
similaires).

Les classes qui modélisent des implémentations poss ibles
des éléments du domaine (par exemple un conteneur)

Les propriétés non factorisées (on construit souvent le graphe
d’héritage vers le haut).

La multiplication des associations qui crée des che mins
redondants entre classes.

Christine FORCE 55

Isima

|urified ¥
modeling language

)

V - DIAGRAMMES D'OBJETS

Décrivent un état possible a un instant ¢, un cas particulier,
une situation concrete, un cas réeel.
Doivent étre conformes au diagramme de classes.

Sont souvent établis en parallele avec les diagrammes de
classes.

Peuvent étre construit avant les diagrammes de classe s afin
de « découvrir » les classes.

Peuvent étre utilisés pour :
» Expliquer un diagramme de classes (donner un exemple).

» Valider un diagramme de classes (le tester).

Christine FORCE 56

Isima V - DIAGRAMMES D'OBJETS

2 EXEMPLES |3
e
Personne lynette : |parent ~ enfant
Personne kayla :
i 2 Personne
parent enfant
preston :
tom : Personne
Personne enfant
parent _
porter - Parker, Penny...
Personne
enfant
e 90\“ 4 pizzéria:
yal Société
. 1(a
lynette: ——
Personne
Ulle Poy, agencePub :
| 4 Société
Travaille pour » -
Personne Société po]
1= 1..*

Christine FORCE 57

Chapitre 3
LES DIAGRAMMES

DE PRQUET

Christine FORCE

58

Isima

|urified ¥
modeling language

)

DIAGRAMME DE PAQUET

Un paguet (package) UML est une m écanique de
groupement.

Les classes peuvent étre groupées au sein d’'une méme
unite, sujet, sous-systeme d’objets en raison de leu rs
objectifs communs.

La notion de paquet peut étre appliqguée a n'importe g uel
élément du modele, pas seulement aux classes.

Les criteres de découpage dépendent de la phase du
processus de développement.

Christine FORCE

59

| urified i D
modeling language

= QU'EST-CE QU'ON MET DANS UN PAQUET ?

Découpage fonctionnel : pour attribuer les objectifs et les
responsabilités a chaque équipe de realisation, iles
possible de définir des paquets a priori, représentan t
chacun un sous-systeme fonctionnel du systeme a réal ser
(Cas d’'Utilisation).

Découpage structurel : classes ayant un lien logique ou une
définition voisine (ex : les classes reliees par une relation
d’heritage) .

Découpage “ pratique " : pour la lisibilité du modéle ou la

facilité d’'utilisation des AGL.

Christine FORCE 60

Isima

3 P

|urified ¥
modeling language

DIAGRAMME DE PAQUET

_l [. Nom symboliquej
Librairie du paquet N
Graphique Héritage entre paquets
~ Il existe au moins un élément
I du paquet source qui
Spécialise (au moins) un
] [] élément du paquet cible
IHO f > Domaine
|
|

o
Dépendance entre paguets
Au moins un élément du paquet
source utilise les services dau
moins un élément du paquet cible
(relation d’obsolescence entre les
eléements des 2 paquets)

Christine FORCE 61

Isima

|urified, ¥
| modeling language

%)

EXEMPLE

A

Une dépendance de type
« access » signifie que le
contenu public de la cible
est accessible au paquet

source.
— — — Une dépendance de type
Ho [EEEEEN . PR HO | ance @e by
=i ';;brﬁ'“ge d'fPSte « import » signifie que le
- graphiq e contenu public de la cible
i i e «access» | est ajouté a l'espace de
1 | [y nommage de la source.
Contréleur Corllitg)éeur
SIS diffusion
— | «<import» «import»]
Biblio || .
g B Acces
[1 Oracle
]] [PARN [T AccesBD
. «aCCESS»> - - {abstrait} [|
uvrages |[-------------3 ecteurs :
g el Acces
Posgres

Christine FORCE

62

Isima

_._J DIAGRAMME DE PAQUET
=
Biblio Biblio
]]
]]
Ouvrages Lecteurs
Ouvrages Lecteurs

Description hiérarchique des paquets : sous forme
d’arbre ou en montrant les paquets inclus.

=7
_ Stereotype d'un paquet
Simulateur (framework, toplevel...)
«framework»

Christine FORCE 63

Isima

i
|urified ¥
modeling language

)

Minimiser le couplage inter paquets :

@

” Ilestau beurre,
Schtroumf Fihrer |

\"7
CONCEPTION DES PAQUETS

Le moins de dépendances possibles.
" « on ne parle pas aux etrangers » !

Maximiser la cohésion intra paquet :

&

¥]

Regrouper les éléments en forte relation,

Regrouper les classes qui rendent des services de méme
nature aux utilisateurs,

Isoler les classes réellement stables de celles qui risquent
d’évoluer au cours du projet,

Isoler les classes m étiers des classes applicatives,

Distinguer les classes dont les objets ont des duréee S de vie
differentes.

Vérifier les dépendances circulaires.

Christine FORCE 64

Isima

-" INTERFACES ENTRE PAQUETS

L’interface d’un paquet est 'ensemble des classes
publiques du paquet.

Les interfaces doivent contenir :
¢+ Seulement I'information nécessaire :
= L’interface doit révéler le moins d’information pos sible...

» Toute I'information nécessaire :

" L'interface doit donner aux autres modules I'inform ation
suffisante pour pouvoir utiliser les ressources off ertes.

» Pour favoriser I'évolution du systeme.

= Cacher les détails de bas niveau (algorithmes, SDD, etc.).

Christine FORCE 65

Isima

3 P

|urified ¥
modeling language

Chapitre 4

LES DIAGRAMMES
D'ETATS

i
JA
INYENTE
CETTE
Mon TEE
A DEvx
EAPRANS

LE DEVXIEME
NOVS DI GUELLE
HEVRE yf JEL4

diagrammes états-transitions)

Christine FORCE 66

DIAGRAMMES D'ETATS

Les diagrammes d’états sont utilisés pour compléter aussi
bien le diagramme de classes d’analyse que le diagr amme de
classes technique. lls sont élaborés pour une classe afin
de visualiser le comportement d’'un objet au cours d u temps.
MODELE
D’ANALYSE
CLASSES FONCTIONS
4 A)
Modeles de Classes Dynamique Scénarios Modele des
et d'Objets des Objets Fonctionnels Processus
- R /
MODELE
TECHNIQUE
67

Christine FORCE

Isima

) LES DIAGRAMMES D'ETATS
——

Modéliser les objets réactifs : ceux dont le comporte ment
est caractérisé par leur réaction a des événements issu s de
I'extérieur de leur contexte (envoyés par d’autres obj ets).
Spécifier :
» Les états stables des objets ayant un comportement
dynamique complexe,
» Les événements qui declenchent les transitions d'éta ts,

* Les actions qui se realisent a chague changement
d'état ou a l'intérieur d’'un état.

Christine FORCE 68

Isima

3

o li ETATS D'UN EXEMPLAIRE DE MEDUSE '-“

Exemplaire vol \

_ _ restitution Aprés 1 an
Q achat >(D|sponlb|e l (Manquant} preslan

A\.

\

N

N restitution Apres 1 |
Creat!on moIs Vol .
De l'objet = /
Point d’entree _ |
unique / Destruction
; , de l'objet
/ Emprunte
/ -

~.
"~
C

Evénement -

déclenchant " Un état de I'objet
une transition

Christine FORCE 69

Isima

Wi ') QUAND FAIT-ON UN DIAGRAMME D’ETATS ?

ﬁm%

Lorsque les objets d’'une classe réagissent differemme nt a
'occurrence du méme evenement et que chaque type de
réaction caractérise un état particulier.

Un état représente une situation de la vie d’'un obj et pendant
laquelle :

» || satisfait une certaine condition,
» |l exécute une certaine activité,
» || attend un certain événement.

Un état a une durée non negligeable mais finie, vari able selon
la vie de I'objet, en fonction des événements qui|l ui arrivent.

Christine FORCE 70

(Un Etat

) QU’EST-CE QU'UN EVENEMENT ?
—

Un Evénement (Un Autre Etat w

J

Signal : événement nomm €&, déclencheé explicitement (exemple :

un envoi de message asynchrone).

Dans un diagramme
d’'interaction on aura
par exemple:

Un Objet

L, &
1 : evénement
. Un Autre
<— ObjEt
2 : réaction

Appel de m éethode : invocation synchrone d’'une opération.

Temporisation : passage du temps

» exemple : apres (after)

10 sec.

Changement : modification de conditions

» exemple : quand (when) tempeérature > 100°

Christine FORCE

71

Isima

Sk LES TRANSITIONS
-

; D : . ;
(Un Etat Evénement [garde] / action Un Autre Etat W
|] A)

Transition gardée : la transition se réalise si I'évén ement se produit
et si la garde (ou condition) est vraie.

Vv

» La condition porte sur des informations visibles et accessibles de
I'objet (parametres de 'evt, valeurs internes, don nées globales).
Gardes :

» Doivent étre mutuellement exclusives pour chaque év énement,

» Doivent couvrir tous les cas.
Action : opérations dont le temps d’exécution est né gligeable ou
nul (une action est instantanée). Une action est :

» non sécable : toute action commenceée se termine,

» deéeclenchée apres I'évaluation de la garde,

» une meéethode de la classe de I'objet destinataire de I'événement.

Christine FORCE 72

Isima

2 5

|urified ¥
modeling language

LES ACTIVITES

Les activites s’exécutent a I'intérieur des états et peuvent prend re du temps,
les activités peuvent étre interrompues par I'occur rence d’un événement.

o
[Eaa) B!

Exemple 1 : une activité
P Do / activité

cycligue est interrompue par L _ \
I'occurrence d’événements. cyclique Evt 2

Exemple 2 : une activité [garde]
p A

séquentielle déclenche une (D e V
transition automatique (avec L ,0 activite J\
garde ici) : une des 2 sequentielle [garde]

transitions est déclenchée des
qgue l'activité se termine, selon
la valeur de la condition.

Christine FORCE 73

Isima

|urified, ¥
| modeling language

(Etat A h

entry / action d’entrée
on evt / action
exit / action de sortie

>

Evénement interne (introduit par le
mot clé « on ») : génére une action
gui ne déclenche pas de transition.

Evénements spéciaux entry et exit :
déclenchent des actions en entrée et
en sortie de I'état.

Christine FORCE

n E LES EVENEMENTS INTERNES

/ Saisie mot de passe \

entry / bloquer les entrees
clavier

do / gérer caracteres saisis
on aide / afficher 'aide

exit / afficher entrées

\clavier

/

Exemple

74

INDIQUER LES OPERATIONS

Evt3/Op7
evtl/Opl
- ™ | |
Etat A salut! serrermain

| Entry / Op2
Do / Op3
On event / Op5 4 Stat ™y
_Exit / Op4 W (atat W
Evt2/Op6 entry I bonjour
entry f bonjour i exit f au revair
@ et I au revair &Dn salutf serrer main

Il y a 7 manieres différentes d’indiquer « des chose s a faire » dans un diagramme d’états

Christine FORCE 75

Isima

ﬁ.p ETAT COMPOSITE
— 4
(SUPER ETAT)
/ teléphone fixe
4 . .
raccroché bouton vert X décroché
connexion _ jbouton rouge _ D_D) déconnexion

_

/ décroché o \
retour a I'etat

englobant
~) _ _ R N
départ (numerotatlon partielle otc. >
’—> entry/envoyer tonalité _ >] _ —>--- @
\) R " Chiffre(n) | entry/Numeéro.ajouter(n)
\ _exit/ arréter tonaliteé)

_J[Numéro.isValid ()]
point d’entree dans Chiffre(n)
K le super état

Christine FORCE 76

/

Isima

B i HISTORIQUE

|urified ¥
modeling language

Lavauto .
i L marche \
historique : indique la
meémorisation du I
dernier sous état visité avage

—
S
S

e aprés 4 mn
W.@ v
[séchage]

[attente]
’ apres 2 mn
aprés 2 mn \ v

Arrét
[lustrage]

d’'urgence
K apres 2 my

°

H* indique que le dernier sous-état visité est memor isé, quelle que soit la
profondeur d’emboitement des sous-états.

Christine FORCE 77

Isima

|urified ¥
modeling language

)

ETATS ORTHOGONAUX

- Les diagrammes d’états permettent de décrire efficaceme nt

les mécanismes concurrents grace a lutilisation d’ états
orthogonaux .

» Un état orthogonal est un état composite comportant
plus d'une région, chaque région représentant un fl ot
d’exécution.

» Graphiquement, dans un état orthogonal, les different es
régions sont séparées par un trait horizontal en poin tillé

allant du bord gauche au bord droit de I'état composi te.
Chaque région peut posseder un état initial et fina [. Une
transition qui atteint la bordure d'un état composite
orthogonal est équivalente a une transition qui attei nt les

états initiaux de toutes ses regions concurrentes.

Toutes les regions concurrentes d'un état composite
orthogonal doivent atteindre leur état final pour que I'état
composite soit considéré comme terminé.

Christine FORCE 78

Isima

3 ?

e ETATS ORTHOGONAUX 2
teléphone mobile) 2
2 Bouton vert \(marche \
(arrét ~
L _ Bouton rouge long C]—[:]J
)<
Nharge nulle /
_ >
A
/ marche bouton vert \ .
s L'objet se trouve
O ; [veille L décroché] dans plusieurs
J . sous-états
bouton rouge court simultanément

. batterie] ~ batterie
chargée | quand faible

charge<C1

branchement

\
batterie

en charge] /

Christine FORCE 79

guand charge

\ >C2

|urified ¥
modeling language

P VIE DES OBJETS

—
TV)
basculer !
[Attente } [Arrét }
s i basculer Y,
/ voiture
/| zappeur =\ destruction
boutonEnfoncé [send Télé.basculer en panne
ly . :
= »[Attente } D casse : reparation
St en état
H de
/| zappeur R e marche

(immatriculation) /
) Télé.
> >
[attente | outon | basculer - . .
Création et de destruction d'objet

- enfonce =%

Communication entre objets

Christine FORCE 80

Isima

i DIAGRAMMES D'ETATS

Représentation de comportements complexes :
» Analyse : comportement d'un objet m étier,
» Modélisation d'un comportement prevu,

» Conception : comportement des objets d'une classe d u

programme.

Représentation de tous les états et seulement les € tats et les

transitions valides des objets de la classe.

» Si pas de transition pour un événement X, I'objet ne reagit

pas a cet évenement dans cet état.

Pas de diagramme a moins de 3 états.

Christine FORCE 81

Isima

|urified ¥
modeling language

)

IMPLEMENTATION

Instructions de type selon ("switch") imbriquées : ma niere
directe qui devient vite peu lisible.

Patron de conception State : une classe pour chaque é tat, un
contrbleur délegue le traitement de chaque événement a la

classe Etat.

- Table contenant les états et les actions a effectuer lors des

transitions.

Christine FORCE

82

Isima

2 P

|urified ¥
modeling language

Context

- State

setState()
request ()

chaque sous-

implémente un
comportement
associé avec un
état du contexte

N

classe ConcreState

LE PATRON STATE

v

State définit la classe
abstraite pour
handleRequest() encapsuler le

comportement
associé avec un
état particulier

/\

du contexte

ConcreteStateA

ConcreteStateB

handleRequest()

handleRequest()

Christine FORCE

83

Isima

3

|urified ¥ E
modeling language

EXEMPLE : LE LIVRE

Livre EtatLivre &
Chaque classe
concrete fournit
setEtat(EtatLivre) emprunt() le comportement
emprunt() <> ;| restitution() de 'objet quand
restitution() vol() il se trouve dans
vol() apresuUnMois() Iétat
aprésUnMois() apresUnAn() correspondant
aprésUnAn() A
| S
le contexte a EtatDisponible EtatEmprunte EtatNonRendu
une methode
pour chaque emprunt() restitution() restitution()
évenement, vol()* vol Q | aprésUnAn()*
elles ne font apresuUnMois()*
que déleguer
et Le patron Etat (State)
g (*) les autres methodes sont vides ou levent une ex ception

Christine FORCE 84

Isima

3 P

|urified ¥
modeling language

EXEMPLE : LE LIVRE

Etat source Etat cible Evénement Garde Action
disponible emprunté emprunt

disponible Non rendu vol

emprunté disponible restitution

emprunté non rendu apres 1 mois

non rendu disponible restitution

non rendu Etat final aprés 1 an

Table des états : on peut construire un interpréteu r qui utilise la table a
I'exécution : plus de travail au départ, mais plus de souplesse.

Christine FORCE 85

Isima

3 P

|urified ¥
modeling language

EXERCICE

Logiciel pour gérer une station service

Avant de pouvoir étre utilisée par le client, chaqu e pom

doit étre armée par le pompiste. La pompe est alors préte, mais ce
n‘est que lorsque le client appuie sur la gachette du pistolet que
'essence est pompee (servie). Si le pistolet est s ur son support,
méme si la gachette est pressée, I'essence n'estpa s pompée.

La distribution d’essence au client est terminée qu and celui-ci remet
le pistolet sur son support. Le debitmetre fournit alors la quantité
d’essence distribuée.

Le client peut payer en liquide, par cheque ou par carte. Le systeme
enregistre le montant et le mode de paiement. En fi n de journée les
transactions sont transmises au systeme comptable d e la sociéte.

Si le niveau de la cuve correspondant a une pompe es t inférieur a 5%
de la capacité maximale, la pompe ne peut plus étre armee.

Christine FORCE 86

Isima

3

| urified

modeling language

Appareil Photo

—

On souhaite modéliser les fonctions d’un appareil p hoto numérique:
Lorsque l'appareil est allumé, il se trouve en mode normal avec flash
désactivé.

Un bouton mode permet de passer du mode normal, au mode paysage, au
mode portrait puis a nouveau au mode normal (boucle)

Le bouton flash permet d’activer le flash automatiq ue, si on appuie a
nouveau sur ce bouton flash, I'appareil supprimera également les yeux
rouges, puis sur une nouvelle pression, le flash se trouve désactive (boucle).

Pour prendre une photo, il y a un gros bouton spéci fiqgue, lorsqu’il est
appuyé l'appareil réalise la photo (la stocke en mém oire).

Il existe aussi un bouton pour la mise au point, lo rsque celui-ci est appuyé
I'appareil effectue une phase de mise au point qui dure une seconde.

L’appareil dispose d’'un bouton de zoom avant et d'u n bouton de zoom
arriere. En restant appuyé sur le bouton de zoom ava nt, 'appareil avance son
zoom (jusgu’a une position maximale), on relache ce bouton des que le
zoom est satisfaisant (ou lorsque le zoom ne peut p lus avancer). Le bouton
de zoom arriere reprend le méme principe.

Christine FORCE 87

DE GAS
D'UTILISATION

Christine FORCE 88

Isima

P DIAGRAMMES DE CAS D'UTILISATION

/O DIAGRAMMES
de CAS
\O d'UTILISATION

(UC)

(unified,
modeling language

DES BESOINS

[ANALYSE }

CC?NCEPTION TESTS
de I'architecture

[SPECIFICATION }

BMPLEMENTATION}

Christine FORCE 89

ROLE DES CAS D'UTILISATION

——
]
Les UC §(_ervent a recu_eillir la DIAGRAMMES
définition des besoins DE CAS
exprimeés par les utilisateurs D'UTILISATION
MODELE du
DOMAINE
ClASSES FONCTIONS
4 N N
odeles de Classes Dynamique Sceénarios Modele des
et d'Objets des Objets Fonctionnels Processus
- -
MODELE
TECHNIQUE

Christine FORCE 20

Isima

W

| rfno%lglgg

D L'EXPRESSION DES BESOINS EST UNE TACHE DIFFICILE

L'utilisateur au

L'utilisateur lors
moment de

: - de la revue
| expression dranalyse
des besoins
L'utilisateur L'utilisateur
apres lecture le jour de
des documents la livraison
de conception et installation

Christine FORCE 91

Isima

3 ?

(urified,
modeling language

UN PROBLEME DE COMMUNICATION

= Expertise, jargon du métier

= Indécision, opinion changeante
= Besoins ambigus,

= Eléments manquants

= I
#IRC.chat-techniques et J |
autres trucs
incompréhensibles

O Schémas souvent
iIncompréhensibles pour les
non initiés.

QO Langage énigmatique
Q Descriptions longues et
fastidieuses

Christine FORCE 92

Isima

DIFFICULTES

|urified ¥ D
modeling language

Définir de QUOI les utilisateurs ont vraiment besoin :

¢ Poser le bon probleme,
» Ne pas laisser les utilisateurs se méler de réalisatio n,

* Ne pas inventer des fonctions pour le plaisir.

Bannir toute considération de realisation lors des
premieres rencontres,

Comprendre le besoin de maniere globale :
* Flot incommensurable d'informations (il faut que...)
» Contradictions entre les utilisateurs.

Besoins mouvants.

Christine FORCE 93

Isima

|urified ¥
modeling language

)

LES CAS D'UTILISATION

Les cas d’utilisation constituent une approche
concrete.

Les analystes ont souvent utilisé des scenarios
pour comprendre les besoins.

- Ces scénarios étaient traitées de maniere

iInformelle et rarement documentés.

L'approche par les Cas d'Utilisation place les
scenarios au premier plan dans les projets.

La démarche est commune aux m éthodes objets
et aux m éthodes traditionnelles.

Christine FORCE 94

|urified ¥ E
modeling language

—

UC - Définition : objectif ou service que le
systeme doit remplir, motive par un besoin
d'un ou plusieurs acteurs.

%<

Client

4
/

;

Acteur : role
joué par un
utilisateur
vis a vis du
systéeme a
concevoir

N

EXEMPLE

Distributeur de Billets

consulter
solde compte

retirer de
I'argent

éteindre/allumer

le distributeur

ravitailler le
coffre

/Technicien
‘.
X
N

Christine FORCE

Acteur
secondaire

95

QU’EST CE QU'UN CAS D’UTILISATION ?

Représente une communication typique entre un
utilisateur et un systeme informatique,

|dentifie une fonctionnalité visible de I'utilisateu
S’occupe d’'un objectif elémentaire de I'utilisateur

Décrit la communication (donnees, événements)
entre les entités extérieures et le systeme a
concevoir.

Le diagramme n'est qu'une "table des matieres".

Christine FORCE

o

96

___J ADOPTER LE POINT DE VUE DE
L'UTILISATEUR
Un Cas d'Utilisation modélise un service rendu a un utilisateur

par le systeme.

» Exemple, un traitement de texte, objectifs de l'uti lisateur :
= “Réaliser une présentation agréable pour un document ”
= “Rendre une présentation similaire a une autre”.

» Solutions de I'informaticien (appelées interactions s ysteme) :
= “ Définir un style ”
= “ Changer un style ”.
= “ Copier le style d’'un document vers un autre ”.

Une interaction (interne au) systeme correspond a une f onction
du logiciel du point de vue de I'informaticien,

» Ce sont des décisions a reporter le plus tard possible.

Christine FORCE 97

Isima

|urified ¥ D
modeling language

SCENARIO

Un cas d’utilisation est un ensemble de scénarios r eliés
par un but commun du point de vue de l'utilisateur

Un scénario est une séquence particuliere
d’enchainements s’exécutant du début a la fin du cas
d’utilisation.

Un cas d’utilisation contient en généeral un scénario
nominal (le cas général) et plusieurs :

» Scenarios alternatifs qui se terminent normalement
(les cas particuliers),

» Scénarios d’erreur qui se terminent en échec.

Christine FORCE 98

L, ACTEURS

on associe un cas d’utilisation a chaque
suite d’événements initiee par un acteur.

Pour trouver les acteurs, on cherche :
+ Quelles sont les principales taches de chaque acteur 2
» L’acteur a-t-il a lire, écrire, modifier une information du
systeme ?
» L’acteur doit-t-il informer le systeme de modificatio ns
exterieures ?

» L’acteur doit-t-il étre inform é de modifications internes ?

* Quels sont les acteurs secondaires ?
acteur

+ Y a-t-il des acteurs systemes (d’autres logiciels .
systeme

en interaction) ?

Christine FORCE 929

Isima

eo
| modeling language

RELATIONS ENTRE UC

GAB

%/
Porteur de
cartes

déeposer de
I'argent

consulter
solde
compte

retirer de
I'argent

(extend)

cheques

étend

déeposer
liquide

Identifier

Retirer avec
stock de
billets
Insuffisant

| Banque

Syst Info %

Acteurs
systemes

\4

Systeme %
Autorisation

Christine FORCE

100

Isima

RELATIONS ENTRE UC

|urified ¥ D
modeling language

Factorisation de comportements communs a plusieurs cas
d’utilisation mais :
» intention différente,
» liaisons différentes avec les acteurs .
Ul inclut U2 : U2 est un sous cas appelé en plusieurs points.
- U2 étend U1 : le comportement de U2 contient celui de Ul :
» U2 réalise quelque chose de plus que U1l.

» un acteur réalise le cas d’utilisation de base et to utes les
extensions qui se présentent.

U1l généralise U2 : le comportement de U2 hérite celui de Ul
(vral aussi pour les acteurs).

- Etend : indique les variations d’'un comportement norm al (les
cas particuliers importants).

Inclut ou Généralise s’utilisent pour éviter les répét itions dans la
description détaillée des UC.

Christine FORCE 101

Isima

|urified ¥ E
modeling language

POINT D'EXTENSION

GAB

%/
Porteur de
cartes

retirer de I'argent

Point d’extension :
vérification solde
{apres avoir demandé
le montant}

F\

v étend
— AN

\
\

si montant > 100 [s
verifier
solde

Christine FORCE

Une extension peut
Intervenir a un point
précis du cas étendu.

On lindigue dans un
compartiment du cas
d’utilisation,
avec une contrainte
indiquant le moment ou il
Intervient.

On peut indiquer une
condition dans une note.

102

Isima

B) GROUPEMENT DES CAS D'UTILISATION

(unified,
modeling language

transaction

A

Pour maitriser la
quantité et la complexité
des UC, on les répartit
en plusieurs conteneur,
que l'on regroupe en
paquets.

A

S
>

=X
a>ul

client

maintenance |

Christine FORCE

sécurité

103

Wl 5

|urified ¥
modeling language

EXEMPLE

transactions service

Opérations non client Maintenance

: recharger
Q | mmeay | [ss ¢

P —

N récupérer
Porteur cartes
de carte Opérateur avalees

Opérations client récupérer

Cheques

_ déposés
rletlrer dte
‘argen -
J Sys Info ;

7\
N/

™

On peut donner Ile
méme nom a deux cas
d’utilisation differents

s'ils n'appartiennent
pas au méme paquet.

Client
banque

Banque
consulter
solde
déposer de
I'argent

Christine FORCE 104

Isima

JF') DIAGRAMME DE CONTEXTE STATIQUE

L’ensemble des UC peut se représenter dans un diagr amme
d'activités (appelé diagramme de contexte).

el‘
Irey de I Syst. %
fgen / Info Banque
e
\
O

Systeme
Porteu ZFG carte GAB \
&
%
056(‘ Systéme %
Autorisation

client

Christine FORCE 105

Isima

3 P

|urified ¥
modeling language

EXEMPLE

DESCRIPTION DES UC
(sommaire d’identification)

Titre : Retirer de l'argent

Résum é : ce cas d'utilisation permet a un porteur de carte (n on client
de la banque) de retirer de I'argent, si son crédithe bdomadaire le

permet.

Acteurs : porteur de carte (principal), systeme d’autorisation

(secondaire)

Date de création, date de mise a jour, version, respons able, etc.

On peut ajouter :

Frequence d’exécution, securité, caractéristiques des acteurs,
besoins en ergonomie...

Christine FORCE 106

Isima

| urified i D
modeling language

DESCRIPTION DETAILLEE
(description des scénarios)

~ Un cas d'utilisation = un processus complet lie a
I'acteur principal (déclencheur) :

* Pré-conditions : contraintes sous lesquelles le cas peut
démarrer,

* Enchainement nominal :
" ex : connexion + calcul + impression...

* Enchainements alternatifs et d’erreur,
» Post-conditions : contraintes apres la fin du cas d’ utilisation,

Enchainement = une liste ou chaqgue ligne est :
» Un message entre un acteur et le systeme,
» Une activite réalisée par le systeme.

Christine FORCE 107

Isima

| urified i D
modeling language

CAS D'UTILISATION
"retirer de l'argent "

~ pré-conditions : la caisse du GAB est alimentée.

aucune carte ne se trouve déja dans le lecteur.

Scenario nominal :

Le porteur de carte introduit sa carte dans le lect eur.

Le GAB vérifie si la carte est une carte bancaire.

Le GAB demande au porteur de saisir son code.

Le GAB compare le code saisi avec celui de la carte

Le GAB demande une autorisation au Sys. d’autorisat ion global
Le Sys.Auto. Donne son accord et fournit le solde h ebdomadaire.

IO SRR A GRS

Le GAB demande au porteur le montant du retrait...

Post-conditions : la caisse du GAB contient moins de billets qu’au
debut du scénario et une transaction a été enregistr ée.

Christine FORCE 108

Isima

D CAS D'UTILISATION
"retirer de I'argent "

Enchainement alternatif :

Al : code d’identification provisoirement erroné : d émarre au point 5 du
scenario nominal.

6. Le GAB indique au porteur de carte que le code est erroné pour
la 1lere ou la seconde fois.

7. Le GAB enregistre I’échec sur la carte
Le scénario nominal reprend au point 3.

Enchainement d’erreur :
E1l : carte non valide : démarre au point 2 du scéna rio nominal.

3. Le GAB indique au porteur que la carte n’est pas va lide (illisible,
périmée...) et la confisque. Le cas d'utilisation est terminé.

E2 : code d’identification définitivement erroné ...

Christine FORCE 109

DEMARCHES DE CONSTRUCTION

DEMARCHE
DESCENDANTE

Identifier les acteurs et les
Cas d'Utilisation

Organiser le modéle
des Cas d'Utilisation

NIWVEAU ENVIRONNEMENT

Construire la structure des
Cas d'Utilisation

isenéraliser les scénarios

NIWVEAU STRUCTURE

Déecrire les Evénements
isenarer les scenarios
et valider

Identifier les apisodes
CoOmmuns
Créer des Scénarios

DEMARCHE
MONTANTE

Christine FORCE

110

Isima

.,’ BESOINS NON FONCTIONNELS

Les UC permettent de spécifier les besoins fonction nels d’'un
systeme logiciel.

Les besoins non fonctionnels sont des criteres de qua lité, pour
chaque service et pour le systeme global (norme ISO 91 26) :

» FACILITE D'UTILISATION : ergonomie, esthétique, fac ilité
d’apprentissage, cohérence de I'lHO, de la document ation et du
matériel de formation.

» FIABILITE : fréquence et sévérité des fautes, facilit é de reprise aprées

panne, prédictibilité et précision des résultats.

» PERFORMANCE (rendement) : temps de réponse, charge, temps de

récupération apres erreur, quantité de mémoire.

*» MAINTENABILITE : testabilité, évolution du systétme a prés livraison.

Christine FORCE 111

B

MEDUSE (LE RETOUR)

modelmg Ianguage

La médiatheque de I'Université des Schtroumfs Erudit s (USE) possede des
ouvrages. lls peuvent étre des livres, des CD ou de s DVD qui existent en plusieurs
exemplaires. Les informations a stocker sur un ouvra ge dépendent de son type.

- La médiatheque est gérée par des documentalistes et est fréquentée par des
lecteurs. Ces lecteurs sont des étudiants de I'USE, des enseignants ou des
extérieurs. lls peuvent emprunter 5 ouvrages au max imum lorsgu’ils sont inscrits.
Un lecteur ayant commis des abus (ouvrages rendus e n retard, détériorations...)
peut étre interdit d’emprunt (durée décidée par le documentaliste).

- Pour pouvoir étre emprunté, un exemplaire doit étre disponible (non emprunté,
non réservé). Chaque emprunt a une durée limitée a4 semaines.

- Un exemplaire emprunté peut étre réservé par un autre lecteur, cette réservation
reste effective pendant 2 semaines aprés la date de retour du livre. Passé ce délai
la réservation est annulée.

Le documentaliste peut ajouter des ouvrages ou des exemplaires d’un ouvrage
dans MEDUSE, il peut également en supprimer (perte, vieillissement...).

Seul le documentaliste peut exécuter les mises a jou r des ouvrages, des lecteurs

et des emprunts. Pour chague exemplaire on conserve I'emprunteur courant.
Les lecteurs effectuent des recherches sur la disci pline, des mots clés, l'auteur,
le titre, la date de parution... Pour cela ils util isent MEDUSE en consultation.

Christine FORCE 112

Isima

B

\ rfno%lglgg

EXERCICE 2 : POMPE A ESSENCE

Un logiciel pour gérer une station service a le fon ctionnement suivant :

Avant de pouvoir étre utilisée par le client, chaqu e pompe a essence
doit étre armee par le pompiste. La pompe est alors préte, mais ce n'est
gue lorsque le client appuie sur la gachette du pis tolet que I'essence
est pompée (servie). Si le pistolet est sur son sup port, méme si la
gachette est pressée, I'essence n’est pas pompée.

La distribution d’essence au client est terminée qu and celui-ci remet le
pistolet sur son support. Le debitmetre fournit alo rs la quantité
d’essence distribuée.

Le client peut payer en liquide, par cheque ou par carte. Le systeme
enregistre le montant et le mode de paiement. En fi n de journée les
transactions sont transmises au systeme comptable d e la sociéte.

Si le niveau de la cuve correspondant a une pompe es tinférieur a 5% de
la capacité maximale, la pompe ne peut plus étre arm ée.

Christine FORCE 113

Isima

|urified ¥ D
modeling language

le
T
PlE Mone., APP&W-
ety P leswrace

Fiey Dice O
v

Christine FORCE 114

COMPORTEMENT DES OBJETS

- Pour monter ou concevoir le comportement des objets, ona:

~ Les diagrammes d’Etats : comportement d’ une classe.

Les diagrammes d‘interactions : échanges de messages entre
plusieurs objets , 2 types:

» Diagramme de Séquences,

» Diagramme de Communication,

F2 F3
Diagrammes d’Activités : description d’'un processus.

A UTILISER PARTOUT OU ON EN A BESOIN :
domaine, exigences, conception détaillée...

Christine FORCE 115

Isima

|urified ¥
modeling language

R
%
-

L'interface et
|'acteur se
confondent

.7

Onne W
distingue
pas flux de
controle et
flux de
données

’E i DIAGRAMME DE SEQUENCE SYSTEME =
DOCUMENTATION DES CAS D'UTILISATION

W

X

Porteur
N

de carte :
ntroduction carte

~ demande code <—

code (valeur)

" —
D
R
o — -
— -,

’idemande autorisation

:Sys Auto

>

. Autorisation (solde)
h 7)
. demande montant ,-
Montant (valeur) _i
. > |
~demande ticket | ,-
. _.—7 OK | i
éjection carte Message
récupération carte avec valeur

<
<
P
<

\4

éjection billets

récupération billets

Y Y _L__

D e e e e

= oo— ,

<<

—
- —,

Systeme vu
comme une
boite noire

e
" —

Les labels de &
fleches sont
des événements
du domaine de
I'application
ou des
informations
échangées

exemple du chapitre precedent

Christine FORCE

116

Isima

@_,

i
|unified, ¥
modeling language

D INCLUSION D'UN CAS D'UTILISATION

UC122
Identifier
Client

% : GAB
I
Client :
: ConsulterCompte |
: I « Inclut » {
I afficherSolde |
[Sl s -
Sives

La relation « inclut » des cas d’utilisation permet de

Christine FORCE

structurer les diagrammes

117

Isima

B

\ rfno%lglgg

DDIAGRAMME DE SEQUENCES DE REALISATION
EXEMPLE HYPER BASIQUE

Dans une application d’achats en ligne, la préparati on des
commandes est lancee via I'lHO de I'appli.

Le client a commandeé plusieurs articles : chaque arti cle fait
I'objet d’une ligne de commande.

Pour chaque ligne de commande, il faut verifier que I article est
en stock en quantité suffisante (le cas sinon n’est pas traite ici).

Pour chaque article livré, si le stock est en dessou s du seuil
critique, on lance un réapprovisionnement,

4
» Les «rectangles » sont des OBJETS, c’'est-a-dire des

Instances des classes de conception.

» Ces objets peuvent é&tre nomm és. On peut montrer plusieurs
objets de la méme classe.

» On peut utiliser une fleche de « retour » d'une m éthode
(seulement dans les cas ou un retour implicite n’est pas clair).

Christine FORCE 118

| modeling language

INTERACTIONS ENTRE OBJETS

. A

Auto-DéIégation\|' --------- 1>

Création |~—>

:Fenétre L Article
Traitement ||:Commande c Jg@d EnStock [~
Commande ommande === | ~_
Préparer () >\ | Objetsa
s | | l'intérieur du
/ *Préparer () | systeme
' -t I
Appel d'une | = . estEnStock () |
méthode de T | -
lobjet cible lteration | u j
.... Bocooonooosoocoooo)
conditionj

[vrai] new ‘Réappro-

> visionnement
i[enStock():vrai]

5 — :Livraison
| | new |

Christine FORCE

119

|urified ¥ E
modeling language

ITERATIONS EN UML 2.0

4
:Fenétre — Article

Traitement ||:Commande :Ligne_ SLNLE

Commande Commande EnStock
. _ | | | ltération j
. Preparer ()_ | i
i __LooP | : [Pour chaque Iigne«i de commande]
| . Préparer () |
™ estEnStock () R
| | o |
| | i [vrai] i
i | " miseAJour () | _ , N
| | | > BesoinDeReapprovisionner ()
| i i -
. [vrai] new :Réappro-
i > visionnement
[enStock()=vrali] |
| | | E » :Livraison
new

L]

Christine FORCE

120

Isima

@ 5 ALTERNATIVES EN UML 2.0
g :Article
:Commande :Ligne EnStock
| Commande Enstock.
E LOOP _J i [Pour chaque Iignei de commande]
| Préparer () |
5 parer () . estEnStock () |
| — >
| AT] - [vral]
= | - | .
. miseAJdour () . BesoinDeRéapprovisionner ()
le « cadre | i |
d’interaction » peut | || | |
représenter : | [vrai] new .Reappro-
une itération (loop) | »| visionnement
une alternative (alt) | |
une option (opt). | ' new .

| i | >\ :Livraison
' miseEnAttente () " [sinon |
| | -
| new » :ProduitEnAttente

Christine FORCE 121

Isima

@ DIAGRAMMES DE SEQUENCES ET PROCESSUS
CONCURRENTS

modelmg language

Les diagrammes de séquences distinguent deux catégo ries d’envoi
de messages :

» Les envois synchrones pour lesquels I'émetteur est blogué et
attend que l'appelé ait fini de traiter le message (méthodes),

» Les envois asynchrones, ou I'émetteur n’est pas blog ué et peut
continuer son execution (processus communiquants).

Exemple : objets vérifiant une transaction bancaire

s Lorsqu’une transaction est créée, elle crée un coor dinateur de
transaction pour I'ensemble des vérifications.

» Ce coordinateur crée un certain nombre (ici 2) d'ob jets
vérificateurs, chacun responsable d’'une vérificatio n. Les objets
vérificateurs peuvent étre appelés de maniere async hrone et ils
s’exécutent en parallele.

» Lorsqu’un vérificateur se termine correctement, il avertit le
coordinateur qui s’assure que tous les verificateur S sont
terminés. lorsque tout est OK, un signal est envoyé ala
transaction.

Christine FORCE

122

i PROCESSUS CONCURRENTS ET ACTIVATIONS

vérification : : succes
new
— »l|:Transaction
- |:Coordinateur _
> verifl:
ne/\w > | Vérificateur
| \ new Transaction
! \
Message T new - verif2:
| asynchrone . ~1 Vérificateur
| Transaction
i . OK
| | Activati nj -
kL tout >
| est
fait ?
| | OK L’'objet
| | < < — 7| s'auto
' valide Ao < détruit
Pa——"— RS | Empilement
tout est d’activation
fait ?

Christine FORCE 123

PROCESSUS CONCURRENTS ET ACTIVATIONS

vérification : : échec
new
— > |:Transaction
:Coordinateur =
verifl:
: new o
| new > | Vérificateur
| Transaction
new - verif2:
: Z| Vérificateur
| |) Transaction
| L Echec
: o =<
| Destruction
! : des
. Transaction vérificateurs
_invalide delete -
h T <
> Destruction dun [--7
autre objet

Christine FORCE 124

Isima

3 P

|urified ¥
modeling language

SYNTAXE

X

:Acteur

objet : Classe

appelDeMéthode ()

>
messageAsynchrone ()

retour
_retour() |

Période
/| d’activité

;
/) Création
! 7" |d'objet

[garde] messageGardeé ()

Messq
~ e
délaj J€ avec

) Ligne de

v/ vie

nouveau:Classe

Autodélégation :
I'objet appelle
une de ses
méthodes

-/

g

Destruction
dobjet j)(

Christine FORCE

125

Isima

eo
| modeling language

—

MEDUSE (LA VENGEANCE)

Bibliotheque

!

*

*
Exemplaire | g 5 . | Lecteur
Ouvrage [€@»— +numéro : +état
, I
A +état ! /nbemprunt
Emprunt
Livre pvD| |cD LR

A

documentaliste

Bibliotheque

Enregistrer
emprunt

Représenter I'emprunt d’un
exemplaire par un diagramme de
séguences détaillé.

On décide que I'acces a I'application
se fait par une interface graphique et
gu’une classe ControleurBiblio gére
les interactions entre l'interface et
les classes métier.

Christine FORCE

126

Isima

W

\ rfno%lglgg

EXERCICE

Au lieu de faire la queue pour affranchir vos lettre s, vous préferez utiliser le
distributeur automatique, il faut :

¥

L

L

¥

Initialiser le distributeur (p. ex. un bouton sur | ‘écran tactile)
Poser une lettre sur la balance,
Chaisir le tarif d’expédition sur I'écran tactile,

L'écran affiche alors le prix et demande si d’autre s lettres sont a
affranchir.

Si oui, le méme scénario se répete (a partir de pose r une lettre),

Sinon il faut payer : le montant total s’affiche et vous devez
introduire les pieces.

La monnaie est rendue et les vignettes sont delivré es.

NB : Représenter le distributeur sous forme de plus leurs objets.

Christine FORCE 127

Isima

2 I

|urified ¥
modeling language

1 sert > A
Distributeur Client
, achete
I I I I 7
Balance Clavier Ecran Monnayeur 1.%
Vignette

distributeur

vendre
vignettes

Christine FORCE 128

Isima

B OU SOMMES NOUS ??

|urified ¥
modeling language

=] 4Spécification des
besoins :

Cas d'Utilisation +
description détaillée
(texte ou diag de
Séguences systeme)

Analyse :
Diag. de Classes +
Etats-Transitions

- Conception :
Classes +
Séquences +
Etats-Transitions

Implémentation

A 4

Christine FORCE 129

Isima

\7

UNIFIED PROCESS

Chapitre 10 T
RETOUR SUR LE
DEVELOPPEMENT
DE LOGICIEL

Christine FORCE 130

‘ i SYNTHESE : QU'EST-CE QU'ON A ?

UNIFIED PROCESS

DIAGRAMME OBJECTIF
Diagrammede Représenter les classes et les relations entre classes:
Classes Domaine : structure statique du systeme étudié ;
et d’Ohjets Technique : architecture du logiciel.

Diagramme de | Décrire le comportement du systéme du point de vue de l'utilisateur :
Cas d'Utilisation fonctionnalités du systéeme, acteurs externes et leurs relations.

- y & - - y 4 y 4
|]

Diagramme te | Décrire la communication entre les objets par I'envoi et
Communication laréception de messages.

- V4 - - -
n

d'Etats les états que traverse un ohjet pendant sa durée de vie.
Diagramme Décrire les processus meétiers de haut niveau ou

d'Activités les actions d'une opération complexe

Diagramme de e et

Comuasants Décrire les composants de Ia STRUCTURE du logiciel

Diagramme de * S p .

Rénlojement Représenter les différents sites qui supportent des composants

Christine FORCE 131

UNIFIED PROCESS

[

[
l

/
o
/

— —

Structure

’-_

~

Diagrammes de
classes / objets

I‘L Diagrammes de

paguets

———\

Diagrammes de
composanis

(-
\
\
\
\

\ ~Jmplémentation

=
e —
—_—

SYNTHESE : QU'EST-CE QU'ON A ?

[

Diagrammes de
déploiement

—_—

s DEEENN . E— E—

______ — ~ \
, ~
~
Diagrammes de ~ ~ \\
cas d'ulilisation N
\ 2
\ , \
\ Diagrammes de \
\\ \ | séquences)
|\ Exigences// _— |
Diagrammes de
/1
/ / / I Communication
/ / |
U i |
lagrammes
/ \ d'élats/iransition //
Dlagrammas \ //
d'activités
Comportement e
NS — S ——— / St

—

—

Christine FORCE

132

%/ SYNTHESE : QU'EST-CE QU'ON FAIT ?

UNIFIED PROCESS

CONGEPTION : Quelle est Ia solution ?

Classes du

ANALYSE :
Quel est e probléme 2
Classes du
domaine /

\ programme

Casd’
% tilisation

e Objets
!- du monde

:Fenétre %ii
asse
-~ : IMPLEMENTATION :
Préparer (
Diag. d'Interactions I'on a dit
Objets =
logiciels

Mais il y a aussi beaucoup de textes a écrire : defi nitions, commentaires,
explications, glossaires, dictionnaires de données... Y

Christine FORCE 133

Isima

‘ i LE PROCESSUS UNIFIE

UNIFIED PROCESS

Piloté par les cas d'utilisation “ Use-case driven ”

» Un logiciel existe pour servir des utilisateurs, po ur le construire on doit
connaitre ce que ses utilisateurs veulent et ont be soin.

» Les cas d'utilisation pilotent les développements ¢ omme un conducteur
pilote une voiture. On peut lacher les mains quelqu es secondes, pas plus.

ITERATIF ET INCREMENTAL

» Les itérations sont des étapes dans le travail et| es incréments des
extensions du projet.

Centré sur I'architecture “ Architecture Centric ”
» L'architecture est la forme gqu'a le systeme.

» larchitecture doit permettre la réalisation des ca s d’utilisation en tenant
compte de I'environnement (matériel, OS, SGBD, rése au...)

Basé sur les composants “ Component Based ”

Piloté par la prise en compte systéematique et perman ente des risques
“ Risk driven”.

Christine FORCE 134

Isima

}“mg ANALYSE DES RISQUES

Obijectifs
» Anticiper les aléas qui menacent le projet
» Mettre en place les mesures de préventions
= Pour que l'occurrence n’ait pas lieu
» Prévoir les mesures de secours
= Pour atténuer les impacts si I'occurrence a lieu

» Evaluer la gravité/occurrence :
= Gravité moyenne/ occurrence assez forte

= Gravité élevée / occurrence faible

Christine FORCE 135

Isima

UNIFIED PROGESS LE PROC ESSUS U N I FI é
(RAPPEL)

Inceptlon Elaboration Construction
étude d'opportunité

‘ Exigences ” ” ” ol T
| Analyse || ” 4“—
‘ Conception ” ” ” o

Implémentation ” ” ”
Test |:|* &

*

Christine FORCE

Transition \

AN/

UNIFIED PROCESS

INCEPTION
(OPPORTUNITE)

Inception
(étude d'opportunité)

Elaboration

Construction

Transition

Quel systeme allons nous construire ? (10% des UC)

Est-on capable de le construire ? (faisabilité, délai

Est-il opportun de le construire ?

Qu’est-ce qui pourrait mettre le projet en péril ? (risque

Exigences % % X% X% %
Analyse * 2k Xk X X
Conception * * % * X% % *
Implémentation * * X% % %k Xk *x X%
Test X % Xk % %k %k X
s, colt)
S)

~ Quelles sont les frontieres du systeme ?

Quelle pourrait étre I'architecture ?

Comment planifier les itérations ?

QUOI ? avec QUI ? pour QUAND ? pour COMBIEN ?

Christine FORCE

137

Isima

v/ |I

Inception
(étude d'opportunité)

Elaboration

Construction

Transition

ELABORATION

* kK

*

Analyse

% K Xk

*

proposer et argumenter des |concepion

* %

* Kk

solutions au besoin exprimé |

* X

* %k %k

* Xk

Test

*

* %k %k

* Xk

Pour chaque nouvel incréement :

Connaissance du m étier des clients (contexte),

» Majorité des cas d'utilisation (80%),
¢ Analyse des risques,

* Modele conceptuel,

* Prototypes,

*» Modele Physique (architecture, solution retenue pour

implémenter le modele conceptuel et les UC).

Christine FORCE

138

Isima

i ‘ Inception

Elaboration Construction Transition
UNIFIED PROCESS (étude d'opportunité)
Exigences * %k % % *
Analyse * * >k %k X
CONSTRUCTION corcopion | R
Implémentation % % X % % X% X X
Test % * * X% X * %

Créer les composants : sources, Scripts, puis exécuta bles.
Fournir une version B de [lincrement en cours de
développement en plusieurs itérations :

» Chaque itération est un mini-projet, ce qui permet de
remédier aux risques d'intégration et de tests en “ big
bang ”.

» Chaque itération fournit un produit de qualité, intég ré et
teste.

Christine FORCE 139

Isima

AN/

UNIFIED PROGESS

Inception Elaboration Construction Transition
(étude d'opportunité)
Exigences * % X% X% *
Analyse * * >k %k X
Conception * * % * Xk X *
TRANSITION - — — —
Test * %* %k X % % X%

Mettre le systeme entre les mains de la communaute des
utilisateurs,

Am éliorer les performances si nécessaire,

Réparer les défauts (mais pas de developpement pour
ajouter des fonctionnalites),

Rédiger la documentation utilisateur,

Former les utilisateurs et intégrer les retours d'expérie nce.

Christine FORCE 140

Isima

AN/

UNIFIED PROGESS

Inception :

JALONS

définition des ambitions du projet,
estimation des colts et des délais,
exigences decrites par les cas d'utilisation primaires :
budget approuve et fonds disponibles.

Elaboration :

architecture stable,

résolution des risques majeurs,

adhésion des decideurs (a I'architecture et la planifi cation)
évaluation des ressources consomm ées / prévisions.

Construction :
& version assez stable pour étre confiée aux utilisateurs

(rédaction d’'un manuel) et accord des décideurs.

Christine FORCE 141

Isima

AN/

UNIFIED PROCESS

Inception
(étude d'opportunité)

Elaboration

Construction

Transition

EXIGENCES p—

Diagrammes de Cas d'Utilisation (reunions, interview

Documentation détaillée des cas d’utilisation,

Diagrammes de sequences systemes (scenarios caracteris

ou diagrammes d’activites,

Exigences non fonctionnelles (performance, ergonomie

portabilite, modifiabilité, fiabilité),

Prototypes (IHO au minimum).

Christine FORCE

Exigences * * X X *
Analyse * * >k %k X
Conception * % % %k % %k *
* * % * X X * %
Test % * %k % Xk % %k
S),

tigues)

142

Isima

A4

UNIFIED PROCESS

Inception
(étude d'opportunité)

Elaboration

Construction

Transition

ANALYSE p—

Exigences * % X% X% *

Analyse * * >k %k X

Conception * % % %k % %k *
* * X% * % %k * %

Test * * * % %k * %

Modele d'Activites M etier : diagrammes d'activités, décrivant
s, futurs).

les processus de gestion et/ou industriels (existant

Modele de Classes m étier,

Dictionnaire : responsabilité des classes, attributs,

Diagrammes d’états des classes d’analyse,

Validation par les experts du domaine.

Christine FORCE

opérations,

143

Isima

i ‘ Inception

Elaboration Construction Transition
UNIFIED PROCESS (étude d'opportunité)
Exigences * % X% X% *
Analyse * * >k %k X
Conception x % Xk % % X% *
CONCEPTION . s ok -
Test % * %k % Xk % %k

Comment construire le logiciel ?
» |dentifier les classes qui vont faire partie de I'arch itecture.
» Découpage de l'application en paquets (sous-systeme S).
" Quelle technologie utiliser ?

» Diagrammes de classes technigues : architecture du log iciel a
construire (design patterns),

» Diagrammes d’Interactions : communication des classes pour
l'implémentation des cas d’utilisation,

» Diagrammes d'Etats : comportement des objets du logic lel.

Christine FORCE 144

Isima

AN/

UNIFIED PROCESS

CONCEPTION

Activité de raffinement progressif (du général aux déta iIs) :

]

Conception de l'architecture : identifier les sous-
systemes

Spécification abstraite : identifier les services et les
contraintes de chaque sous-systeme.

Conception de l'interface (de programmation) entre
sous-systemes.

Conception des composants.
Conception des SDD.

Christine FORCE 145

Isima

R/ Qoo S

Inception Elaboration Construction Transition
(étude d'opportunité)
UNIFIED PROGESS
Exigences * % X% X% *
Analyse * * >k %k X
Conception * % % %k % %k *
V4
IMPLEMENTATION i > i -
Test * * % %k Xk % Xk

Diagrammes de Paguets, de Composants montrant les
classes fortement dependantes,

Diagrammes d'interaction (séquences ou communication)

Diagrammes Etats-Transitions : description détaillée des
comportements,

Diagrammes de Déploiement.

Christine FORCE 146

METHODES AGILES

Scrum
¢ http://www.scrum.org/
Agile Modelling
e hitp://www.agilemodeling.com/
RAD : Rapid Application Modelling
¢ hitp://www.rad.fr/
eXtreme Programming
¢ http://xp-france.net/
Principes
organisation en equipes
* retours rapides
& gestion des changements
» simplicité de conception
¢ Qualité

Christine FORCE

147

Isima

(unified,
modeling language

)

SCRUM

Scrum n’est pas une m éthodologie, c’est plutét un cadre a
I'intérieur duquel il est possible d'utiliser difféeren ts

processus et techniques.

Scrum adopte une approche itérative et incrémentale d ans

le but de
» rendre le processus plus preévisible,
» contrOler le risque.
Une itération en Scrum s’appelle un sprint .

» Un sprint dure environ 1 mois.

Christine FORCE 148

Isima

3 P

i

Scrum : déroulement d'un sprint

eling language

Avant : réeunion de planification (sprint planning meeting)
» |'équipe deécide de ce qui va étre fait
" « Quoi ? » = carnet de produit (product backlog)

|'équipe détermine comment elle va développer les
fonctionnalités decidées

" « Comment ? » = carnet de sprint (sprint backlog)
Pendant : la mélée quotidienne (daily scrum)

L’équipe se rencontre chaque jour pour une réunion
d’inspection et d’adaptation du processus (environ 15 mn),
* Chagque membre de I'équipe présente ce qui suit :
= ce gu’il ou elle a accompli depuis la derniere mélé e,
= ce qu’il ou elle va faire d’ici la prochaine mélée,
" |les obstacles a surmonter, s’il y a lieu.

+ La mélee quotidienne am éliore la communication et
favorise la prise de décision

Christine FORCE 149

Isima

3 P

|urified ¥
modeling language

Scrum : déroulement d'un sprint
Apres : revue du sprint (sprint review meeting)
» I'équipe Scrum et les parties prenantes discutent de ce
qui a été fait pendant le sprint :
= Ce qui a eté compléte
= Ce qui n'a pas été compléte
= Les problemes rencontres et leur résolution.
» elles discutent également de ce qui devra étre fait au
cours du prochain sprint.
Encore apres : rétrospective de sprint,

» inspecter le déroulement du dernier sprint du point de
vue des individus, des relations interpersonnelles, d es
processus et des outils.

" Succes, améliorations...

Christine FORCE 150

Isima

=

.5_ i -
P L'equipe Scrum (les roles)

E

Le Scrum Master : « expert » Scrum

» Guide I'équipe dans les pratiques et regles de Scrum.
Le propriétaire de produit (product owner)
» Gere le carnet du produit,
» Sélectionne et affecte les priorités aux fonctionnali tes,
» S’assure de la valeur du travail de I'équipe.
L’équipe (team) : 7 personnes *2
» transforme le contenu du carnet du produit en un sous-

ensemble de fonctionnalités livrable a la fin du spri nt.
» Contient des membres aux compétences variees
(architecture, déeveloppement, contrble qualite,

conception d'IHO, base de données...)
» L’équipe s’organise elle-méme.

Christine FORCE 151

Isima

i Artefacts de Scrum
——

~ Carnet du produit (product backlog) :

» liste des fonctionnalités, technologies, am éliorations et
correctifs qui correspondent aux changements a apporter
au produit lors des livraisons futures.

» Chague élément possede : une description, un niveau de
priorité et une estimation.

Graphique de progression de livraison (Burndown Chart) :

» mesure ce qui reste a accomplir dans le carnet au fil du
temps.

Carnet de sprint (sprint backlog) :

» Contient toutes les taches nécessaires pour réaliser u n
sous-ensemble potentiellement livrable du produit.

Graphique de progression de sprint (sprint Burndown Chart S B
» mesure I'avancement des taches a realiser dans le sprin .

Christine FORCE 152

Isima

‘ i ACTIVITES DE SOUTIEN

UNIFIED PROGESS

Gestion de projet :
» Planification, contréle de la progression,

» Gestion des ressources et du budget.

Gestion des configurations et des changements
» Trace des elements du développement (artefacts),
» Gestion des demandes de changements.
Gestion de I'environnement : adaptation du processus a u

projet et fourniture d’outils logiciels:

» Modélisation graphique et Développement (AGL),
» Management des exigences,

» Gestion des versions et des configurations,

» Aide aux tests et Evaluation de la qualité.

153

Christine FORCE

Isima

‘ i Development Effort Distribution

UNIFIED PROCESS Deployment
= LE PROCESSUS DE TEST % Analysis
20%
Dncumentatmn
0%
Test unitaire ,
" ! - Design
Test d'integration : cohésion, 1%
- CodeUnit T
Test de sous-systéme e

» recherche des erreurs d’interface,

Test du systeme : veérification de I'adéquation aux besoins
fonctionnels et non fonctionnels,

Test d’acceptation (“a”) : erreurs ou omissions dans la définition
des besoins = VALIDATION

» Test dans les conditions définies par le client.

Christine FORCE 154

Isima

A4

UNIFIED PROGESS

IMPORTANCE DU TEST

La qualité du test manuel repose sur la pertinence du testeur.

Méme si le test de logiciel revient cher, I'absence de gqualité peut
étre encore plus colteuse pour I'entreprise.

Le test n'ajoute pas de qualite, il permet de connai tre I'état du
produit aux différents stades de son développement.

La création d’'une équipe de test distincte exige un changement
radical de culture : ce n'est pas une pratique courant e de faire
vérifier son travail par quelqu’un d’autre.

Christine FORCE 155

Isima

‘ ’ TYPES DE TESTS

UNIFIED PROCESS

" Tests “boite noire” ou fonctionnels : scénarios déduits des
specifications fonctionnelles.

» Test aux limites ,
» Tests de non regression,

Tests statistigues : données tirées aléatoirement dans le
domaine des entrées en supposant une répartition st atistique.

- Tests “boite blanche” ou structurels : exploitation systematique
des chemins du logiciel.

Test de charge : performance d’'un systeme sous une charge
maximale (verifier si le systéeme peut supporter les tra fics de
pointe).

Test de stress : capacité d’'un systeme a recupérer lorsqu’il est
pousseé au-dela de ses limites

Christine FORCE 156

Isima

‘ i PROCESSUS DE TEST

UNIFIED PROGESS

CODE DU PROGRAMME SPECIFICATION DU
S0OUS TEST PROGRAMME SOUS TEST
Génération Génération
automatique de automatique de
tests structurels tests fonctionnels
TESTS
Soumission des &Eenération
tests automatique

de l'oracle
PROGRAMME SOUS TEST

Résultats
des tests

ORACLE :
Veérification et

analyse des
résultats de test

VERDICT

Christine FORCE 157

Isima

‘ i TESTS FONCTIONNELS

UNIFIED PROCESS

PRINCIPE
» Comparer les resultats obtenus avec les résultats a ttendus.
» montrer non seulement qu'un logiciel fait ce qu'on attend de lui,
mais aussi qu'il ne fait pas ce qu'on en n'attend p as.
METHODE

» Déterminer des classes d'équivalence :
= Valeurs valides non extrémes,
= Valeurs valides extrémes (aux bornes),
= Valeurs speciales,
= valeurs non valides...
REGLE
» Archiver et Automatiser (tests de non régression).

Christine FORCE 158

Isima

‘ i CLASSES D'EQUIVALENCE

UNIFIED PROCESS

classes d'entrée classes d'entrées

incorrectes Q correctes

COMPOSANT

classes de sortie

Une classe = les cas devant étre traités identiguem ent
(1 test par classe)

»Un test peut combiner plusieurs classes valides,

» |l est nécessaire de réaliser un test individuel pa r classe invalide.
On identifie les classes en analysant la spécificat ion.

Pour chague condition externe, on établit la liste des classes valides
et invalides.

Christine FORCE 159

Isima

(unified,
modeling language

)

CLASSES D'EQUIVALENCE

exemple :
» spécification : x doit étre compris entre 0 et 999, ety entre O et
4 .
Condition externe Classes valides Classes invalides

h (1) (2) X<0
0 < X < 999 (3) X>999
T (4) (5)Y <0
0<Y<4 (6) Y>4

Jeux de tests valides (1 & 4 : X=10,Y=2)
(non compris les tests aux bornes)
Invalides (2 : X=-4, Y=3), (3 : X=2000, Y=2),
(5 : X=10, Y=-10), (6 : X=6, Y=6)

Christine FORCE

160

‘ i GRAPHE CAUSE - EFFET

On identifie des sous-ensembles indépendants de la spécification :

» Un graphe représentant la totalité de la spécificati on serait trop
complexe,

Les conditions sur les entrées (ou les classes d'eq uivalence) sont
identifiées et numerotées,

Les sorties produites sont identifiees et numérotée S,

@ ® ©
identité @
A (@) @ @ v @
(ou)
=6 EC
non @
Symboles de base

Christine FORCE 161

Isima

‘ i GRAPHE CAUSE - EFFET

UNIFIED PROCESS

Soit M le montant d’'une proposition et D sa durée :

» SI M < M1 elle est recevable,

#» SIM1 = M<M2etD <D], elle est recevable.

Christine FORCE

Cl:M<M1
C2: M<M2
(E8 Db

"~ E1 : proposition

recevable

E2 proposition non
recevable

162

‘ i GRAPHE CAUSE - EFFET

lINIFIEIl PHI]GI‘.SS

C1l G2 s El E2
Table de 0 0 0 X
Décision
0 0 s X
0) il 0 X
0 1 X
1 0 0 X
1 0 1 X
1 & 0 X
1 1 1 X
Pour extraire des cas de tests, il suffit de choisir pour chaque

ligne contenant un X, des donnees correspondant aux
combinaisons des causes associees.

Christine FORCE 163

}n mg TESTS STRUCTURELS

Ne permettent de tester que ce qui figure dans le progra mme,
mais pas de trouver les oublis par rapport a la spécifica tion.

Tests unitaires : mesurer une couverture de test sur

» Blocs d’Instructions (I1B),
#» Chemins de Décision a Décision (CDD ou DDP ou branche s) =
transferts de contréle qui résultent d’'une décision,

» Portions Linéaires de Code suivie d’'un Saut (PLCS ou LCSAJ)

" Saut = transfert de contrGle qui donne lieu a une rupt ure
de séguence au cours de la lecture d’'un source.

"PLCS = suite de nceuds du graphe de contrdle
commencant au point d’entrée ou a la cible d'un sau f,
finissant a la sortie ou a la cible dun saut et ne

comportant aucun saut.

Christine FORCE 164

Isima

\7

UNIFIED PROCESS

lireN
pouridelaN

fait

fin

PLCS : exemple

d
| G

C

Christine FORCE

Dénombrement :
» sauts :arcse,d,c

» cibles d’'un saut :

(2) (3)

RRIECS=

(-1)

(1) ->(3)

-

1 (4,2,3) -> (-1)

M2)e>u(2)
s ilL2)=>7(2)
3=l
(232> (1)

d
d
C
£

165

Isima

7

UNIFIED PROCESS

D1
D2

D3

PLCS : exemple

Jeux | Chem. d'exécution | Chem. d'exécution | Chem. d'exécution
d'essai noauds branches PLCS
n=3 1,2,2,2,3,-1 a,d,d,d,b,c p4,p3,p6
n<0 11,55l e,C pl,p6
n=1 1,2,3,-1 a,b,c p2
PLCS JE D1 D2 D3
pl X
p2 X
p3 X
p4 X
pS X
6 X
| =
100% instructions — —

100% branches 100% PLCS

Christine FORCE

166

Isima

A4

UNIFIED PROGESS

LIMITES DU TEST STRUCTUREL

A B S

- - lire (A,B)

pair pair 0 X := A mod 2;

- - - y := B mod 2;

pair impair 1 S:=2*x+y; @

impair pair 2

impair | impair 3

Incapacité de demontrer que certaines parties de code sont
manquantes,

Impossibilité de détecter certaines erreurs sur les donn ées,
mais indispensables dans les domaines critiques.

Christine FORCE 167

Isima

‘ i TEST DU TEST

UNIFIED PROGESS

Le semage de défauts (fault seeding : capacité des tests a trouver
les fautes)

» On « seme » des défauts et on effectue les tests,

s On compte le nombre de defauts decouverts,

» On estime le nombre de défauts restants.
La concurrence :

s 2 equipes difféerentes effectuent des tests,

» On compte les défauts non communs déecouverts,
Les mutants (variante du semage de défauts):

¢ On introduit des déefauts pour créer des mutants,

» Les mutants qui ont un comportement différent
sont « tués par le tests ».

Christine FORCE 168

Isima

‘ i TEST DES LOGICIELS OBJETS

UNIFIED PROGESS

Premier probleme, trouver une unité indépendante de test

» Dans les systemes structurés, chaque procedure ou
fonction peut étre testée indépendamment.

» En objet, une m éthode n'existe que par rapport a la classe
a laquelle elle est attachée.

» On ne peut pas toujours tester une m éthode sans
I'appliquer a un objet.
» Chaqgue objet possede un état, le contexte dans lequ el une

methode est exécutée, est défini par ses param etres et par
I'objet auquel elle est appliguée

Christine FORCE 169

Isima

‘ ’ TESTS DE CLASSES

UNIFIED PROCESS

On teste des séquences de m eéthodes appliquées a un objet.
Graphe d’héritage :
#» Tester une classe générale, puis les classes qui la
specialisent, jusqu’aux classes feuilles.

*= Mais attention : ce n'est pas parce qu'une m éthode
fonctionne bien dans une classe donnee, qu’elle
fonctionnera aussi bien une fois héritée.

= || est difficile de savoir, parmi les tests sélection nées pour
la classe parente, ceux qui peuvent étre éliminés e t ceux
qui doivent étre rejoués.

Test des paires de fonctions : tous les enchainement s
possibles de 2 m éthodes.

Christine FORCE 170

Isima

‘ i TESTS D’INTEGRATION

UNIFIED PROCESS

Le test dintégration consiste a vérifier que les cla sses
clientes utilisent les classes serveurs en conformité avec
I'interface offerte par la classe serveur.

Il faut parfois simuler le comportement d’'une classe pour
pouvoir en tester une autre.

On explore les diagrammes de dépendances,

On exploite les diagrammes d’états :

» Tester chaque transition d’état, et chaqgue méthode de la classe
dans chacun des états ou elle est sollicitee.

Christine FORCE 171

Isima

‘ i CONCLUSION SUR LE TEST

UNIFIED PROCESS

Les m éthodes agiles préconisent une utilisation important e
du test unitaire.

Une famille de frameworks a été développée pour le tes t
unitaire de classes : Junit pour Java, Nunit pour la p late-

forme .NET...

On utilise les cas dutlisation et les diagrammes
d’interaction associés pour ordonner et dériver les cas d e
test.

Christine FORCE 172

‘ i DIAGRAMMES UML ET VUES

UNIFIED PROCESS

Le modele UML d’'un systeme peut étre étudié sous dif ferentes
perspectives (vues).

Modele UML = ensemble de diagrammes décrivant le sys teme
developpé.

Vue = angle particulier sous lequel un participant voi t le systeme
ou combinaison de diagrammes intéressant un particip ant.

structure implémentation

Iogiquem
| X |
P NUlkater 7

omportement environnement

Christine FORCE 173

Isima

v/ —e

UNIFIED PROCESS LES VUES D' UML N ostucture i piementation

logique H@

Vue utilisateur : |‘\ __________________
» Définit les buts et objectifs des clients du system e
(services).

+ Définit les besoins et contraintes de la solution

» Vue unificatrice des autres vues : elle sert de réfé rence a
leur validation.

Vue structure logique

» Décrit les aspects statiques, représentant la structu re du
probleme.

» |dentification des éléments du domaine (classes, at tributs,
paquets, etc.) et de leurs relations.

Christine FORCE 174

Isima

‘ i LES VUES D' UML Cructure

UNIFIED PROCESS logique

Vue comportement

» Deécrit les aspects dynamiques, du comportement du
probleme et de sa solution.

» Spécifie les interactions et collaborations entre
éléments de la solution.

» Montre la décomposition du systeme en termes de
processus, d’interactions entre processus, de
synchronisation et de communication entre activites.

Christine FORCE 175

Isima

\7 A o A

UNIFIED PROCESS LES VU ES D, U M I- \ structure _mentation

logique y

Y
nemen

Vue implémentation : |t\ __________________ l’

» aspects structure et comportement de la solution.

» réalisation, organisation en composants, contraintes d e
développement, etc.

Vue environnement :

» aspects de structure et de comportement du contexte d ans
lequel la solution est realisée.

» ressources matérielles (disposition, nature, performance
etc.) et leur utilisation par le logiciel.

Christine FORCE 176

Isima

A\

ONIFED PROCESS IL N'Y A PAS DE MIRACLE

On n'a jamais toutes les informations du premier coup (les
iterations dans une phase sont nécessaires).

Les choses changent au cours du développement (surto ut
les exigences).

On n'éliminera pas tous les risques comme on l'esperait et
de nouveaux apparaissent.

Il faudra détruire des lignes de codes écrites pendant
I'itération précédente.

Christine FORCE 177

Isima

‘ i IL NE FAUT PAS :

UNIFIED PROCESS

Penser que Inception = Spécification, Elaboration = C onception,
| Construction = Codage.

Penser que Elaboration = définir rigoureusement des mode les
| traduits en code pendant la Construction.

Essayer de définir la plupart des besoins avant d'enta mer la
| conception ou I'implémentation, etc.

Croire que la durée normale d'une itération est de 4 mois et non
| de 4 semaines.

Penser que l'adoption d'UML impligue beaucoup d'acti vités et
| beaucoup de documents.

Essayer de planifier un projet en deétail du début a la fin et de
| prédire toutes les itérations.

Christine FORCE 178

Isima

W | IL FAUT ALLER VOIR :

|urified ¥
modeling language

~ En francais :

uml.free.fr

www.iro.umontreal.ca/~dift6803/ (voir les transparents)
dept-info.labri.fr/~aimar/Enseignement/UML/cours.pdf
http://www.abrillant.com/doc/uml/

- En anglais :

www.rational.com/umi

www.omg.org/uml/

www.cetus-links.org/ (lien UML)
www.sdmagazine.com/uml/
www.agilemodeling.com/essays/umiDiagrams.htm
bdn.borland.com/together/modeling/umil/
http://hillside.net/patterns/

=

L=

L=

L

L

L

L

L

L

L

-

Christine FORCE 179

Isima

'rtn%lglgg

BIBLIOGRAPHIE

Modélisation objet avec UML (2de édition) - Pierre-A lain Muller —
Eyrolles 2000

UML2 distilled: brief guide to the standard object modelling language
(3eme édition) - Fowler - Addison-Wesley 2003.

UML Guide de l'utilisateur - G. Booch, J. Rumbaugh, |. Jacobson -
Eyrolles 2000.

Le Processus Unifié de Développement Logiciel - 1. Ja cobson —
Eyrolles 2000.

Introduction au Rational Unified Process - Philippe Kruchten - Eyrolles
2000.

UML2 et les Design Patterns - Craig Larman - Campus P ress 2005
UML2 en action - Pascal Roques, Frank Vallée - Eyroll es 2004
UML2 par la pratique - Pascal Roques - Eyrolles 2004

UML2 B. Charroux, A. Osmani et Y. Thierry-Mieg - Pea rson Education
2005

Téte la premiere : Design Patterns, E. Freeman — O'R eilly 2005

Christine FORCE 180

Isima

eo
| modeling language

—

Christine FORCE 181

