ISIMA

Institut Supérieur d'Informatique de
Modélisation et de leurs Applications

24, Avenue des Landais
BP 10 125
63 173 AUBIERE cedex.

Compte-rendu
Java et objet avance

Filiere 3 : " Systemes d'Information et Aide a la
décision "

DesioN PaTTERNS & JEE

TowmE 2

Auteur : Mathieu BRUNOT

Responsable ISIMA : Guillaume DEMONSABLON

Date : 13/02/2012

. Origine :
I s I M A JAVA ET OBJET AVANCE MathieugBRUNOT
Date : . Page
13/02/2012 Design Patterns & JEE 2 sur 13

Titre du document :

JAVA ET OBJET AVANCE

Design Patterns & JEE

Type du document

Compte-rendu

Date du document :

13/02/2012

Origine du document :

Pagination :

Mathieu BRUNOT / ISIMA 13 pages

Objet du document

avance.

Ce document présente la seconde partie du rapport dans le cadre du cours de Java et objet

Mathieu BRUNOT

Objet du document

Page 2

, —
I s I M A JAVA ET OBJET AVANCE Mathiot BRUNOT

13/?)352512 Design Patterns & JEE 3'2?12913
Sommaire
ODbjet dU AOCUMEBNL. ...ttt e e e e e e e e e e e e e e enan e e
S T0] 101 4 F= 1 = T PR
T Y (0o LU Tox 1] o 1 4
[DTS T [T = 11 (=T o L S
A.SIratégie (SIrategy)....ccooieiiiiiii et 5
B.Fabrique (Factory Method)............uuiiiie e 7
C.Stratégie & FabriQUE.ccoo i e e e e e e eeaans 9
D.Observateur (ODSEIVET).......uuiiiieee et "
[I.Java Enterprise Edition (JEE).........uuiiiii et 13

Mathieu BRUNOT Sommaire Page 3

, i
I s I M A JAVA ET OBJET AVANCE Mathiot BRUNOT
Date : . Page
13/02/2012 Design Patterns & JEE 4suri3
Introduction

La seconde partie du rapport de Java et objet avancé se concentre sur les Design Patterns du
GOF (Gang Of Four) et le fonctionnement de Java EE.

Dans un premier temps, on présentera les Design Patterns suivants :
1 Stratégie (Strategy) : Design Patterns de comportement ;
2 Fabrique (Factory Method) : Design Patterns de création ;

3 Stratégie & Fabrique : association des Design Patterns précédant ;

4 Observateur (Observer) : Design Patterns de comportement.

Chacun des Design Patterns présentera le principe et I'implémentation réalisée en TP.

Par la suite, on présentera les intéractions entre les différentes couches de Java EE : BDD,

JDBC, EJB entité, ...

Mathieu BRUNOT

Introduction

Page 4

, —
I s I M A JAVA ET OBJET AVANCE Mathiot BRUNOT

Date : . Page
13/02/2012 Design Patterns & JEE 5 sur 13

|. Design Patterns
A. Stratégie (Strategy)

Le but de ce Design Pattern de comportement est de rendre interchangeables des algorithmes
d'une méme famille

Exemple :
% Parcours d'un arbre :

e Parcours en profondeur ;
e Parcours en largeur

Cette interchangeabilité est obtenue via I'utilisation d'un classe abstraite définissant un
algorithme générique. Les algorithmes spécifiques dérivent de I'algorithme générique. De cette
facon, le contexte s'éxécute indépendamment de I'algorithme utilisé.

Diagramme de classes de I'implémentation du Design Pattern Stratégie :
(2 MainStrategy

@ main(String[])

& AStrateqy (9 Context

@, strateqy_ AStrategy
u:f' execUtel) P

A @ operation()

(& Strateqgy1 (& Strateqgy?
@ parameter_ String S parameter_ Steing
@ executer) @ execute)

lllustration 1: Stratéqgie (Strateqy) : Design Patterns de Comportement

Mathieu BRUNOT A.Stratégie (Strategy) Page 5

, —
I s I M A JAVA ET OBJET AVANCE Mathiot BRUNOT

Date : . Page
13/02/2012 Design Patterns & JEE 6 sur 13

Dans l'implémentation du Design Pattern Stratégie effectuée en TP, la stratégie a pour simple
but d'afficher I'objet courant avec plus ou moins de détails :

- la straégie 1 affiche uniquement le parameétre (quelconque) de la stratégie ;
— la stratégie 2 affiche l'instance et le paramétre de cette derniére.

L'opération du contexte consiste donc simplement a afficher la stratégie courante.

Main :

public static void main (String[] args) {
System.out.println ("GOF Design Patterns: Strategy");

Context context = new Context();
context.operation() ;

context.setStrategy (new Strategy2());
context.operation () ;

}

Sortie Console :

GOF Design Patterns: Strategy
Strategyl
com.isima.zz3.advjava.tpl.strategy.Strategy2@4febe2c3:Strategy?2

Mathieu BRUNOT A.Stratégie (Strategy) Page 6

, —
I s I M A JAVA ET OBJET AVANCE Mathiot BRUNOT

Date : . Page
13/02/2012 Design Patterns & JEE 7 sur 13

B. Fabrique (Factory Method)

Le Design Pattern Fabrique a pour objectif de déléguer la création d'un objet.

Exemple :
«» Création d'un document:
e Document XML ;

e Document texte.

Pour cela, on définit un créateur abstrait qui définit une méthode de fabrication d'une interface
de produits. La fabriquation d'un produit particulier peut ensuite étre spécifiée par héritage.

Le client ne communique qu'avec un créateur abstrait des interfaces de produits. Seul le
créateur instancié connait la classe réelle de I'objet.

Diagramme de classes de I'implémentation du Design Pattern Fabrigue :
(9 MainFactoryMethod

& mainiStringl])

&% ACreator sinterfaces
& IProduct
@ createProduct): IPraduct A
@ operation)
A (9 Product? (9 Productl
(9 Creator? (9 Creator1
@ createProduct(); IProduct @ creasteProduct(); IProduct

lllustration 2: Fabrique (Factory Method) : Design Pattern de Création

Mathieu BRUNOT B.Fabrique (Factory Method) Page 7

, —
I s I M A JAVA ET OBJET AVANCE Mathiot BRUNOT

Date : . Page
13/02/2012 Design Patterns & JEE 8 sur 13

La encore l'implémentation reste trés simple. Chacune des fabriques est chargée de fabriquer
un seul et unique produit et I'opération généique d'une fabrique consiste a fabriquer un produit et
I'afficher.

Main :

public static void main(String[] args) {
System.out.println ("GOF Design Patterns: Factory Method");

ACreator creator = new Creatorl();
creator.operation() ;

creator = new Creator2();
creator.operation () ;

}

Sortie Console :

GOF Design Patterns: Factory Method
com.isima.zz3.advjava.tpl.factorymethod.Productl@7d8a992f
com.isima.zz3.advjava.tpl.factorymethod.Product2@23fc4dbec

Mathieu BRUNOT B.Fabrique (Factory Method) Page 8

, —
I s I M A JAVA ET OBJET AVANCE Mathiot BRUNOT

Date : . Page
13/02/2012 Design Patterns & JEE 9 sur 13

C. Stratégie & Fabrique

Ici, on couple les Design Patterns Stragégie et Fabrique vus précédemment.

Exemple :

R/

« Création d'un document:

e Document XML ;

e Document texte ;
« Algorithme de lecture du document (en fonction du type de document créé) :
e [ecture d'un fichier XML ;

e Lecture d'un fichier plat.

Diagramme de classes de I'implémentation des Design Patterns Stratégie & Fabrique :
{5 MainStrategyFactoryMethod

& mainiStringl]) 4 ACreator

@ strategy_ AStrategy

)
c’ AS"atEgy t‘q createProduct AProduct

@ operation)

t'o' executel &Product)

. | . |

(& Strateqgy? © Strategy! (& Creatort (2 Creator?
@ execute(APraduct) ® execute(AProduct) & crestor1() & Crestor2()
@ createProduct); AProduct @ createProduct) LProduct
£ AProduct
@, parameter_ String
| & Product? I | & Product I

lllustration 3: Stratégie & Fabrique utilisés simultanément

Mathieu BRUNOT C.Stratégie & Fabrique Page 9

ISIMA

JAVA ET OBJET AVANCE

Origine :

Mathieu BRUNOT

Date :
13/02/2012

Design Patterns & JEE

Page
10 sur 13

L'aspect Fabrique de cette implémentation est la méme que dans I'exemple précédant. La

Stratégie intervient dans I'algorithme qu'utilise I'opération de la fabrique :
— Produit 1 — Stratégie 1 : affichage du paramétre du produit ;

— Produit 2 — Stratégie 2 : affichage du produit et de son paramétre.

Main :

public static void main(String[] args) {
System.out.println ("GOF Design Patterns:

ACreator creator = new Creatorl();
creator.operation() ;

creator = new Creator2();
creator.operation () ;

}

Strategy + Factory Method");

Sortie Console :

This is a product!

GOF Design Patterns: Strategy + Factory Method

com.isima.zz3.advjava.tpl.strategyandfactorymethod.Product2@45bab50a:

This is a product!

Mathieu BRUNOT

C.Stratégie & Fabrique

Page 10

, —
I s I M A JAVA ET OBJET AVANCE Mathiot BRUNOT

Date : . Page
13/02/2012 Design Patterns & JEE 11 sur 13

D. Observateur (Observer)

Le Design Pattern Observateur a pour objectif de synchroniser plusieurs objets sur I'état d'un
autre objet. Lorsque l'objetsujet change d'état, il avertit les observateurs et ceux-ci se mettent a
jour en conséquence.

Remarque :

R/

< Il est implémenté de facon native en Java au travers des Listenner.

Diagramme de classes de l'implémentation du Design Pattern Observateur :
{2 MainOhserver

@ mainStringl])

(& ASubject & AObserver

O obzerverz_; Collection=2A0bservers [0, %] 4 -]
&' getzubject: ASubject

@ hindlACbzerver) b'u' setSubject(A Subject)
@ notityObservers() t‘“‘ Lpdatel)
@ unkindl AObzerver) Z%
[‘k (< Observer
Subject
G] o statuz_; String
o, status_: String @, subject_; Subject
@ changestatuz() @ =etSubject ASubject)
@ updater)

lllustration 4: Observateur (Observer) : Design Patterns de_
Comportement

Mathieu BRUNOT D.Observateur (Observer) Page 11

, —
I s I M A JAVA ET OBJET AVANCE Mathiot BRUNOT

Date : Page

13/02/2012 Design Patterns & JEE 12 sur 13

L'implémentation du Design Pattern Observateur prend la forme d'un systéeme de log des
modifications d'un sujet. Le sujet a un paramétre d'état qui a pour valeur initiale "default".,
tandis que I'observateur a état initial a null.

Lors du changement d'état du sujet, I'observateur log le changement du sujet : instance, date
& heure et paramétre du sujet.

Main !

public static void main (String[] args) {
System.out.println ("GOF Design Patterns: Observer");

Subject subject = new Subject();
Observer observer = new Observer () ;

subject.bind (ocbserver) ;

System.out.println (subject.getStatus());
System.out.println (observer.getStatus()) ;

subject.changeStatus () ;

System.out.println (subject.getStatus()) ;
System.out.println (observer.getStatus()) ;

}

Sortie Console :

GOF Design Patterns: Observer

default

null

changed

com.isima.zz3.advjava.tpl.observer.Subject@6ac2al32 changed at 2012/02/12 00:41:25:
changed

Mathieu BRUNOT D.Observateur (Observer) Page 12

ISIMA JAVA ET OBJET AVANCE

Date : Design Patterns & JEE Page
13/02/2012 13 sur 13
— . DBC
° qu Glassfish J
N2 o
» -,

SGBD
(MysQL

Liste les Configure les Mapping entre

Servlets, Configure les Facades (EJB, les tables issues Parametre la

configure le flux entre les Sécurité, de la ressource connection a la BD

lancement, ... pages JSF WebServices, ...) et des POJO (ressource & pool)

un-we faces-config sun-ejb-fjar peysistence sun-resoufrces
.xml .xml .xml .xml .xml

Mathieu BRUNOT Il.Java Enterprise Edition (JEE) Page 13

	Objet du document
	Sommaire
	Introduction
	I. Design Patterns
	A. Stratégie (Strategy)
	B. Fabrique (Factory Method)
	C. Stratégie & Fabrique
	D. Observateur (Observer)

	II. Java Enterprise Edition (JEE)

