
Institut Supérieur d'Informatique de 
Modélisation et de leurs Applications

24, Avenue des Landais
BP 10 125
63 173 AUBIERE cedex.

Compte-rendu
Java et objet avancé

Filière 3 : " Systèmes d'Information et Aide à la
décision "

DDESIGNESIGN P PATTERNSATTERNS & JEE & JEE
TOME 2

Auteur : Mathieu BRUNOT

Responsable ISIMA : Guillaume DEMONSABLON

Date : 13/02/2012



JAVA ET OBJET AVANCÉ
Origine :

Mathieu BRUNOT

Date :
13/02/2012 Design Patterns & JEE Page 

2 sur 13

Titre du document     :  Type du document

JAVA ET OBJET AVANCÉ Compte-rendu

Design Patterns & JEE
Date du document     :  

13/02/2012

Origine du document     :  Pagination     :  

Mathieu BRUNOT / ISIMA 13 pages

Objet du document
Ce document présente la seconde partie du rapport dans le cadre du cours de  Java et objet
avancé.

Mathieu BRUNOT Objet du document Page 2



JAVA ET OBJET AVANCÉ
Origine :

Mathieu BRUNOT

Date :
13/02/2012 Design Patterns & JEE Page 

3 sur 13

Sommaire
Objet du document...................................................................................................................
Sommaire.................................................................................................................................
Introduction............................................................................................................................4
I.Design Patterns....................................................................................................................5

A.Stratégie (Strategy).........................................................................................................5
B.Fabrique (Factory Method)..............................................................................................7
C.Stratégie & Fabrique.......................................................................................................9
D.Observateur (Observer).................................................................................................11

II.Java Enterprise Edition (JEE)............................................................................................13

Mathieu BRUNOT Sommaire Page 3



JAVA ET OBJET AVANCÉ
Origine :

Mathieu BRUNOT

Date :
13/02/2012 Design Patterns & JEE Page 

4 sur 13

Introduction

La seconde partie du rapport de Java et objet avancé se concentre sur les Design Patterns du 
GOF (Gang Of Four) et le fonctionnement de Java EE.

Dans un premier temps, on présentera les Design Patterns suivants :
 1  Stratégie (Strategy) : Design Patterns de comportement ;
 2  Fabrique (Factory Method) : Design Patterns de création ;
 3  Stratégie & Fabrique : association des Design Patterns précédant ;
 4  Observateur (Observer) : Design Patterns de comportement.

Chacun des Design Patterns présentera le principe et l'implémentation réalisée en TP.

Par la suite, on présentera les intéractions entre les différentes couches de Java EE : BDD, 
JDBC, EJB entité, ...

Mathieu BRUNOT Introduction Page 4



JAVA ET OBJET AVANCÉ
Origine :

Mathieu BRUNOT

Date :
13/02/2012 Design Patterns & JEE Page 

5 sur 13

I. Design Patterns  
A. Stratégie (Strategy)  

Le but de ce Design Pattern de comportement est de rendre interchangeables des algorithmes 
d'une même famille 

E  xemple     :  
 Parcours d'un arbre :

● Parcours en profondeur ;
● Parcours en largeur

Cette  interchangeabilité  est  obtenue  via  l'utilisation  d'un  classe  abstraite  définissant  un 
algorithme générique. Les algorithmes spécifiques dérivent de l'algorithme générique. De cette 
façon, le contexte s'éxécute indépendamment de l'algorithme utilisé.

Diagramme de classes de l'implémentation du   Design Pattern   Stratégie     :  

Mathieu BRUNOT A.Stratégie (Strategy) Page 5

Illustration   1  : Stratégie (Strategy) : Design Patterns de Comportement  



JAVA ET OBJET AVANCÉ
Origine :

Mathieu BRUNOT

Date :
13/02/2012 Design Patterns & JEE Page 

6 sur 13

Dans l'implémentation du Design Pattern Stratégie effectuée en TP, la stratégie a pour simple 
but d'afficher l'objet courant avec plus ou moins de détails :

– la straégie 1 affiche uniquement le paramètre (quelconque) de la stratégie ;
– la stratégie 2 affiche l'instance et le paramètre de cette dernière.

L'opération du contexte consiste donc simplement à afficher la stratégie courante.

Main     :  
public static void main(String[] args) {

System.out.println("GOF Design Patterns: Strategy");

Context context = new Context();
context.operation();

context.setStrategy(new Strategy2());
context.operation();

}

Sortie Console     :  
GOF Design Patterns: Strategy
Strategy1
com.isima.zz3.advjava.tp1.strategy.Strategy2@4fe5e2c3:Strategy2

Mathieu BRUNOT A.Stratégie (Strategy) Page 6



JAVA ET OBJET AVANCÉ
Origine :

Mathieu BRUNOT

Date :
13/02/2012 Design Patterns & JEE Page 

7 sur 13

B. Fabrique (Factory Method)  

Le Design Pattern Fabrique a pour objectif de déléguer la création d'un objet.

E  xemple     :  
 Création d'un document:

● Document XML ;
● Document texte.

Pour cela, on définit un créateur abstrait qui définit une méthode de fabrication d'une interface 
de produits. La fabriquation d'un produit particulier peut ensuite être spécifiée par héritage.

Le client  ne communique qu'avec un créateur  abstrait  des  interfaces de produits.  Seul  le 
créateur instancié connait la classe réelle de l'objet.

Diagramme de classes de l'implémentation du   Design Pattern   Fabrique     :  

Mathieu BRUNOT B.Fabrique (Factory Method) Page 7

Illustration   2  : Fabrique (Factory Method) : Design Pattern de Création  



JAVA ET OBJET AVANCÉ
Origine :

Mathieu BRUNOT

Date :
13/02/2012 Design Patterns & JEE Page 

8 sur 13

Là encore l'implémentation reste très simple. Chacune des fabriques est chargée de fabriquer 
un seul et unique produit et l'opération généique d'une fabrique consiste à fabriquer un produit et 
l'afficher.

Main     :  
public static void main(String[] args) {

System.out.println("GOF Design Patterns: Factory Method");

ACreator creator = new Creator1();
creator.operation();

creator = new Creator2();
creator.operation();

}

Sortie Console     :  
GOF Design Patterns: Factory Method
com.isima.zz3.advjava.tp1.factorymethod.Product1@7d8a992f
com.isima.zz3.advjava.tp1.factorymethod.Product2@23fc4bec

Mathieu BRUNOT B.Fabrique (Factory Method) Page 8



JAVA ET OBJET AVANCÉ
Origine :

Mathieu BRUNOT

Date :
13/02/2012 Design Patterns & JEE Page 

9 sur 13

C. Stratégie & Fabrique  

Ici, on couple les Design Patterns Stragégie et Fabrique vus précédemment.

E  xemple     :  
 Création d'un document:

● Document XML ;
● Document texte ;

 Algorithme de lecture du document (en fonction du type de document créé) :
● Lecture d'un fichier XML ;
● Lecture d'un fichier plat.

Diagramme de classes de l'implémentation des   Design Patterns   Stratégie & Fabrique     :  

Mathieu BRUNOT C.Stratégie & Fabrique Page 9

Illustration   3  : Stratégie & Fabrique utilisés simultanément  



JAVA ET OBJET AVANCÉ
Origine :

Mathieu BRUNOT

Date :
13/02/2012 Design Patterns & JEE Page 

10 sur 13

L'aspect Fabrique de cette implémentation est la même que dans l'exemple précédant.  La 
Stratégie intervient dans l'algorithme qu'utilise l'opération de la fabrique : 

– Produit 1 → Stratégie 1 : affichage du paramètre du produit ;

– Produit 2 → Stratégie 2 : affichage du produit et de son paramètre.

Main     :  
public static void main(String[] args) {

System.out.println("GOF Design Patterns: Strategy + Factory Method");

ACreator creator = new Creator1();
creator.operation();

creator = new Creator2();
creator.operation();

}

Sortie Console     :  
GOF Design Patterns: Strategy + Factory Method
This is a product!
com.isima.zz3.advjava.tp1.strategyandfactorymethod.Product2@45bab50a: This is a product!

Mathieu BRUNOT C.Stratégie & Fabrique Page 10



JAVA ET OBJET AVANCÉ
Origine :

Mathieu BRUNOT

Date :
13/02/2012 Design Patterns & JEE Page 

11 sur 13

D. Observateur (Observer)  

Le Design Pattern Observateur a pour objectif de synchroniser plusieurs objets sur l'état d'un 
autre objet. Lorsque l'objetsujet change d'état, il avertit les observateurs et ceux-ci se mettent à 
jour en conséquence.

R  emarque     :  
 Il est implémenté de façon native en Java au travers des Listenner.

Diagramme de classes de l'implémentation du   Design Pattern   Observateur     :  

Mathieu BRUNOT D.Observateur (Observer) Page 11

Illustration   4  : Observateur (Observer) : Design Patterns de   
Comportement



JAVA ET OBJET AVANCÉ
Origine :

Mathieu BRUNOT

Date :
13/02/2012 Design Patterns & JEE Page 

12 sur 13

L'implémentation  du  Design Pattern Observateur  prend la  forme d'un système de log  des 
modifications d'un sujet. Le sujet a un paramètre d'état qui a pour valeur initiale  "default"., 
tandis que l'observateur à état initial à null.

Lors du changement d'état du sujet, l'observateur log le changement du sujet : instance, date 
& heure et paramètre du sujet.

Main     !  
public static void main(String[] args) {

System.out.println("GOF Design Patterns: Observer");

Subject subject = new Subject();
Observer observer = new Observer();
subject.bind(observer);

System.out.println(subject.getStatus());
System.out.println(observer.getStatus());

subject.changeStatus();

System.out.println(subject.getStatus());
System.out.println(observer.getStatus());

}

Sortie Console     :  
GOF Design Patterns: Observer
default
null
changed
com.isima.zz3.advjava.tp1.observer.Subject@6ac2a132 changed at 2012/02/12 00:41:25: 
changed

Mathieu BRUNOT D.Observateur (Observer) Page 12



JAVA ET OBJET AVANCÉ Origine :
Mathieu BRUNOT

Date :
13/02/2012

Design Patterns & JEE Page 
13 sur 13

II. Java Enterprise Edition (JEE)  

Mathieu BRUNOT II.Java Enterprise Edition (JEE) Page 13

BD

sun-resources
.xml

Glassfish

Paramètre la 
connection à la BD
(ressource & pool)

Connection
Pool

Ressource
JDBC

JNDI

SGBD(MySQL, ...)

persistence
.xml

EJB Entités
Requêtes, 
liens entre
tables, ...

Mapping entre 
les tables issues
de la ressource
et des POJO

JDBCJPA
Façades 

local/remote

Interfaces pour
CRUD

DAO
JSP/Servlets, 
JSF/Facelets, 
WebServices

Web

sun-ejb-jar
.xml

faces-config
.xml

Configure les
Façades (EJB, 
Sécurité, 
WebServices, ...)

Configure les
flux entre les 
pages JSF

sun-web
.xml

Liste les 
Servlets,
configure le 
lancement, ...


	Objet du document
	Sommaire
	Introduction
	I. Design Patterns
	A. Stratégie (Strategy)
	B. Fabrique (Factory Method)
	C. Stratégie & Fabrique
	D. Observateur (Observer)

	II. Java Enterprise Edition (JEE)


