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Introduction

La seconde partie du rapport de Java et objet avancé se concentre sur les Design Patterns du
GOF (Gang Of Four) et le fonctionnement de Java EE.

Dans un premier temps, on présentera les Design Patterns suivants :
1 Stratégie (Strategy) : Design Patterns de comportement ;
2 Fabrique (Factory Method) : Design Patterns de création ;

3 Stratégie & Fabrique : association des Design Patterns précédant ;

4 Observateur (Observer) : Design Patterns de comportement.

Chacun des Design Patterns présentera le principe et I'implémentation réalisée en TP.

Par la suite, on présentera les intéractions entre les différentes couches de Java EE : BDD,

JDBC, EJB entité, ...

Mathieu BRUNOT
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|. Design Patterns
A. Stratégie (Strategy)

Le but de ce Design Pattern de comportement est de rendre interchangeables des algorithmes
d'une méme famille

Exemple :
% Parcours d'un arbre :

e Parcours en profondeur ;
e Parcours en largeur

Cette interchangeabilité est obtenue via I'utilisation d'un classe abstraite définissant un
algorithme générique. Les algorithmes spécifiques dérivent de I'algorithme générique. De cette
facon, le contexte s'éxécute indépendamment de I'algorithme utilisé.

Diagramme de classes de I'implémentation du Design Pattern Stratégie :
(2 MainStrategy

@ main(String[])

& AStrateqy (9 Context

@, strateqy_ AStrategy
u:f' execUtel) P

A @ operation()

(& Strateqgy1 (& Strateqgy?
@ parameter_ String S parameter_ Steing
@ executer) @ execute)

lllustration 1: Stratéqgie (Strateqy) : Design Patterns de Comportement
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Dans l'implémentation du Design Pattern Stratégie effectuée en TP, la stratégie a pour simple
but d'afficher I'objet courant avec plus ou moins de détails :

- la straégie 1 affiche uniquement le parameétre (quelconque) de la stratégie ;
— la stratégie 2 affiche l'instance et le paramétre de cette derniére.

L'opération du contexte consiste donc simplement a afficher la stratégie courante.

Main :

public static void main (String[] args) {
System.out.println ("GOF Design Patterns: Strategy");

Context context = new Context();
context.operation() ;

context.setStrategy (new Strategy2());
context.operation () ;

}

Sortie Console :

GOF Design Patterns: Strategy
Strategyl
com.isima.zz3.advjava.tpl.strategy.Strategy2@4febe2c3:Strategy?2
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B. Fabrique (Factory Method)

Le Design Pattern Fabrique a pour objectif de déléguer la création d'un objet.

Exemple :
«» Création d'un document:
e Document XML ;

e Document texte.

Pour cela, on définit un créateur abstrait qui définit une méthode de fabrication d'une interface
de produits. La fabriquation d'un produit particulier peut ensuite étre spécifiée par héritage.

Le client ne communique qu'avec un créateur abstrait des interfaces de produits. Seul le
créateur instancié connait la classe réelle de I'objet.

Diagramme de classes de I'implémentation du Design Pattern Fabrigue :
(9 MainFactoryMethod

& mainiStringl])

&% ACreator sinterfaces
& IProduct
@ createProduct): IPraduct A
@ operation)
A (9 Product? (9 Productl
(9 Creator? (9 Creator1
@ createProduct(); IProduct @ creasteProduct(); IProduct

lllustration 2: Fabrique (Factory Method) : Design Pattern de Création
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La encore l'implémentation reste trés simple. Chacune des fabriques est chargée de fabriquer
un seul et unique produit et I'opération généique d'une fabrique consiste a fabriquer un produit et
I'afficher.

Main :

public static void main(String[] args) {
System.out.println ("GOF Design Patterns: Factory Method");

ACreator creator = new Creatorl();
creator.operation() ;

creator = new Creator2();
creator.operation () ;

}

Sortie Console :

GOF Design Patterns: Factory Method
com.isima.zz3.advjava.tpl.factorymethod.Productl@7d8a992f
com.isima.zz3.advjava.tpl.factorymethod.Product2@23fc4dbec
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C. Stratégie & Fabrique

Ici, on couple les Design Patterns Stragégie et Fabrique vus précédemment.

Exemple :

R/

« Création d'un document:

e Document XML ;

e Document texte ;
« Algorithme de lecture du document (en fonction du type de document créé) :
e [ecture d'un fichier XML ;

e Lecture d'un fichier plat.

Diagramme de classes de I'implémentation des Design Patterns Stratégie & Fabrique :
{5 MainStrategyFactoryMethod

& mainiStringl]) 4 ACreator

@ strategy_ AStrategy

)
c’ AS"atEgy t‘q createProduct AProduct

@ operation)

t'o' executel &Product)

. | . |

(& Strateqgy? © Strategy! (& Creatort (2 Creator?
@ execute(APraduct) ® execute(AProduct) & crestor1() & Crestor2()
@ createProduct); AProduct @ createProduct) LProduct
£ AProduct
@, parameter_ String
| & Product? I | & Product I

lllustration 3: Stratégie & Fabrique utilisés simultanément
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L'aspect Fabrique de cette implémentation est la méme que dans I'exemple précédant. La

Stratégie intervient dans I'algorithme qu'utilise I'opération de la fabrique :
— Produit 1 — Stratégie 1 : affichage du paramétre du produit ;

— Produit 2 — Stratégie 2 : affichage du produit et de son paramétre.

Main :

public static void main(String[] args) {
System.out.println ("GOF Design Patterns:

ACreator creator = new Creatorl();
creator.operation() ;

creator = new Creator2();
creator.operation () ;

}

Strategy + Factory Method");

Sortie Console :

This is a product!

GOF Design Patterns: Strategy + Factory Method

com.isima.zz3.advjava.tpl.strategyandfactorymethod.Product2@45bab50a:

This is a product!

Mathieu BRUNOT
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D. Observateur (Observer)

Le Design Pattern Observateur a pour objectif de synchroniser plusieurs objets sur I'état d'un
autre objet. Lorsque l'objetsujet change d'état, il avertit les observateurs et ceux-ci se mettent a
jour en conséquence.

Remarque :

R/

< Il est implémenté de facon native en Java au travers des Listenner.

Diagramme de classes de l'implémentation du Design Pattern Observateur :
{2 MainOhserver

@ mainStringl])

(& ASubject & AObserver

O obzerverz_; Collection=2A0bservers [0, %] 4 - ]
&' getzubject: ASubject

@  hindlACbzerver) b'u' setSubject( A Subject)
@ notityObservers() t‘“‘ Lpdatel)
@ unkindl AObzerver) Z%
[‘k (< Observer
Subject
G ] o statuz_; String
o, status_: String @, subject_; Subject
@ changestatuz() @ =etSubject ASubject)
@ updater)

lllustration 4: Observateur (Observer) : Design Patterns de_
Comportement
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L'implémentation du Design Pattern Observateur prend la forme d'un systéeme de log des
modifications d'un sujet. Le sujet a un paramétre d'état qui a pour valeur initiale "default".,
tandis que I'observateur a état initial a null.

Lors du changement d'état du sujet, I'observateur log le changement du sujet : instance, date
& heure et paramétre du sujet.

Main !

public static void main (String[] args) {
System.out.println ("GOF Design Patterns: Observer");

Subject subject = new Subject();
Observer observer = new Observer () ;

subject.bind (ocbserver) ;

System.out.println (subject.getStatus());
System.out.println (observer.getStatus()) ;

subject.changeStatus () ;

System.out.println (subject.getStatus()) ;
System.out.println (observer.getStatus()) ;

}

Sortie Console :

GOF Design Patterns: Observer

default

null

changed

com.isima.zz3.advjava.tpl.observer.Subject@6ac2al32 changed at 2012/02/12 00:41:25:
changed

Mathieu BRUNOT D.Observateur (Observer) Page 12
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