
Parseur XML (2 séances)

Raksmey PHAN

Ce TP vous a pour objectif de vous faire découvrir les fichiers XML. Nous allons créer un programme

qui permet de lire et écrire un fichier XML. Puis nous verrons un exemple de requêtes avec un service

web.

TP réalisé à partir du tutoriel de N. Cynober (http://cynober.developpez.com/).

I – Lire un parseur XML en Java (45min)
1) Créer un nouveau projet de type Java Application nommé LireParseurXML.

2) Télécharger la librairie jdom (fichier jdom.jar) de l’adresse ci-dessous et intégrer-le dans

votre projet LireParseurXML.

Fichier jdom.jar : http://fc.isima.fr/~phan/tp/web_service/jdom.jar

3) Télécharger l’exemple de fichier XML ci-dessous et le mettre dans la racine de votre projet :

http://fc.isima.fr/~phan/tp/web_service/ParseurXML_Exercice1.xml

4) Modifier votre Main.java pour qu’il ressemble au code suivant et vérifier que le programme

affiche bien les noms et les prénoms des personnes dans le fichier XML.

package parseuxml;

import java.io.*;

import org.jdom.*;

import org.jdom.output.*;

import org.jdom.input.*;

import org.jdom.filter.*;

import java.util.List;

import java.util.Iterator;

/**

 *

 * @author Phan

 */

public class Main {

 static org.jdom.Document document;

 static Element racine;

 public static void main(String[] args) {

 SAXBuilder sxb = new SAXBuilder();

 try {

 document = sxb.build(new File("./ParseurXML_Exercice1.xml"));

 }

 catch(Exception e){}

 racine = document.getRootElement();

 afficheALL();

 }

 static void afficheALL() {

 List listEtudiants = racine.getChildren("etudiant");

 Iterator i = listEtudiants.iterator();

 while (i.hasNext()) {

 Element courant = (Element) i.next();

 System.out.print(courant.getChild("nom").getText() + " ");

http://cynober.developpez.com/tutoriel/java/xml/jdom/
http://fc.isima.fr/~phan/tp/web_service/jdom.jar
http://fc.isima.fr/~phan/tp/web_service/ParseurXML_Exercice1.xml

 System.out.println(courant.getChild("prenom").getText());

 }

 }

}

5) Commenter le code.

6) Télécharger le fichier XML suivant :

http://fc.isima.fr/~phan/tp/web_service/ParseurXML_Exercice2.xml

Au code précédent, ajouter une fonction FiltreAfficheAll() qui vous permet de lire dans le

fichier ParseurXML_Exercice2.xml tout en se restreignant seulement aux étudiant de la classe

P1. (hint : utiliser la méthode Element::getAttributeValue())

II – Créer un fichier XML (45min)
1) Créer un nouveau projet de type Java Application nommé EcrireFichierXML.

2) Copier et exécuter le code suivant :

package ecrirefichierxml;

import java.io.*;

import org.jdom.*;

import org.jdom.output.*;

/**

 *

 * @author Phan

 */

public class Main {

 static Element racine = new Element("personnes");

 static org.jdom.Document document = new Document(racine);

 public static void main(String[] args) {

 Element etudiant = new Element("etudiant");

 racine.addContent(etudiant);

 Attribute classe = new Attribute("classe", "P2");

 etudiant.setAttribute(classe);

 Element nom = new Element("nom");

 nom.setText("Nom1");

 etudiant.addContent(nom);

 try {

 XMLOutputter sortie = new XMLOutputter(Format.getPrettyFormat());

 sortie.output(document, new FileOutputStream("./Exemple1.xml"));

 } catch (java.io.IOException e) {

 }

 }

}

3) Commenter le code.

4) Ecrire un programme qui vous permet de générer le fichier XML suivant :

<personnes>

 <etudiant classe="P1">

 <nom>Nom1</nom>

 <listprenom>

 <prenom>Prenom11</prenom>

 <prenom>Prenom12</prenom>

 </listprenom>

 </etudiant>

 <etudiant classe="P1">

 <nom>Nom2</nom>

 <listprenom>

 <prenom>Prenom2</prenom>

http://fc.isima.fr/~phan/tp/web_service/ParseurXML_Exercice2.xml

 </listprenom>

 </etudiant>

 <etudiant classe="P2">

 <nom>Nom3</nom>

 <listprenom>

 <prenom>Prenom3</prenom>

 </listprenom>

 </etudiant>

</personnes>

III – Utiliser un service de localisation à partir d’une adresse IP. (1h30)
IpInfoBD permet de localiser le lieu de votre connexion en utilisant votre adresse IP. Il fournit

également une API qui permet d’interroger sa base de données à partir d’une Application cliente

écrite en Java. La réponse est reçue sous format XML, qu’il faut « parser » pour obtenir les

informations.

1 - Création de l’interface graphique (20min)
1) Créer un projet de type Java Application, appelé IpInfoDB. Créer ensuite un nouveau

fichier nommé NewJDialog de type JDialog Form (Swing GUI Forms  JDialog Form).

Supprimer le fichier ipinfodb.java et aller dans la propriété de votre projet pour définir

NewJDialog.java comme nouveau fichier « main ».

2) Télécharger et inclure dans votre librairie le *.jar suivant :

http://fc.isima.fr/~phan/tp/web_service/jdom.jar

3) Dans la NewJDialog créer l’interface suivante :

NB : NetBeans génère automatiquement plusieurs lignes de codes qui permettent d’initialiser

les éléments de l’interface que vous construisez. Inutile de s’en préoccuper, ce qui est important ce

sont les fonctions que l’on va inclure dans le bouton « Localiser ».

4) Importer les packages suivants pour manipuler les fichiers :

java.io.*

http://fc.isima.fr/~phan/tp/web_service/jdom.jar

java.io.DataInputStream;

import java.io.DataOutputStream;

import java.net.*;

5) Importer les packages suivants pour le traitement des fichiers xml :

org.jdom.*;

 org.jdom.output.*;

org.jdom.input.*;

org.jdom.filter.*;

2 – Interrogation du service web (50min)
Pour dialoguer avec le service web, nous allons utiliser un socket de communication. Nous allons

configurer ce socket pour envoyer la requête et lire la réponse. La Figure 1: Schéma de

communication avec le service web IPInfoDB montre l’utilisation du socket dans la communication

avec le service web.

IPInfoDB

(Service web)

S

(Socket)

input

(InputStream)

output

(OutputStream)

SocketEntrer

(BufferReader)

SocketSortie

(PrintWriter)

Lecture

Ecriture

Figure 1: Schéma de communication avec le service web IPInfoDB

En utilisant les aides ci-dessous, écrire un programme pour interroger le service web et pour

générer un fichier xml en sortie.

Pour écrire créer un fichier resultat.xml :

File destination;

destination = new File("resultat.xml");

FileOutputStream Ouput = new FileOutputStream(destination);

PrintWriter ecrivain;

ecrivain = new PrintWriter(Ouput);

Pour écrire dans resultat.xml :

ecrivain.println(responseLine);

Pour interroger le service web, on utilise un socket :

// Manipulation du socket de réponse du service Web

Socket S = null;

// Coordonnées et numéro de port du service web

S = new Socket("api.ipinfodb.com", 80);

InputStream input = S.getInputStream();

OutputStream output = S.getOutputStream();

// Création de pointeur vers l'entré et la sortie du Socket

BufferedReader SocketEntrer = new BufferedReader(new InputStreamReader(input));

PrintWriter SocketSortie = new PrintWriter(new OutputStreamWriter(output));

// Préparation de la requete pour le webservice

SocketSortie.println("GET

/v2/ip_query.php?key=d57b1e68028f1e5629d553346e48f7f2457981a385726f9c6daf4ddff36f5e

b6" + "&ip=" + adresse + "&timezone=false HTTP/1.0");

SocketSortie.println("Host: api.ipinfodb.com");

SocketSortie.println("Accept: jpg, pictures/gif, pics/jpg, pics/gif, image/x-

xbitmap, pics/jpeg,image/pjpeg, image/png, */*");

SocketSortie.println("");

// Envoie de la requete au web service

SocketSortie.flush();

Pour lire le résultat dans le socket :

SocketEntrer.readLine();

3 – Affichage du résultat (20min)
 Parser le fichier resultat.xml et afficher le résultat dans l’application java comme le montre la

Figure 2: Résultat de l'interrogation du service web IPInfoDB.

Figure 2: Résultat de l'interrogation du service web IPInfoDB

