1S

PARTIE I

Rappels sur la
programmation objet

Christophe Duhamel
Bruno Bachelet

Luc Touraille

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012

Les objets

Définitions
0 Objet
o Classe

Formalisme UML

Relations entre classes
o Héritage

o Agrégation

o Association

Définitions

Objet

o Entité cohérente rassemblant des données
et le code travaillant sur ces données

o Données = attributs

o Code = méthodes

Classe
o Fabrique a objets, i.e. une donneée qui décrit des objets
0o Représente une catégorie d'objets

Exemple d'instanciation

Classe Instances

Marque="Lotus"
PuissanceFiscale=11
VitesseMaximale=230

Véhicule

#NombreDeVéhicules : Entier VitesseCourante=170

#Marque : Chaine
#PUissance ﬁscale . Entier |nstanciati0n
#Vitesse maximale : Entier
#VitesseCourante : Entier

+Créer un véhicule() Marque="Peugeot"

+Détruire un véhicule() PuissanceFiscale=7

+Démarrer() VitesseMaximale=150
+Avancer()

+Reculer()

|
|
|
|
|
|
|
+Accélerer(Taux : Entier) | VitesseCourante=70
|
|
|
|
|

Membres d'une classe

Attributs d'instance: une valeur par objet
o Exemple: vitesse / couleur d'un véhicule

Attributs de classe: une valeur par classe
o Partagés par tous les objets de la classe
o Exemple: nombre de véhicules présents a un instant donné

Methode d'instance: agit sur un objet particulier
o Exemple: accélérer, freiner

Methode de classe: agit sur toute la classe
o Exemple: ajouter un nouveau véhicule

Principes fondateurs

Encapsulation
o Protection des attributs
o Interface de communication

Héritage
0 Relation de généralisation / spécialisation
o Factorisation de donnees et comportement

Polymorphisme
o Réponse spécifigue a un message commun

Encapsulation

Séparation forte entre interface et implémentation

Interface: partie visible d'un objet

o Ensemble de messages paramétrables

o Communiquer avec un objet = envol de messages
o Dans la pratique: appel direct de méthode

Implémentation: partie cachée d'un objet
o Attributs
o Quelgques methodes

Intérét: principe d'abstraction
o Madification de I'implémentation d'un objet sans effet visible

o Tant que l'interface n'est pas modifiee
— aucune conséquence pour l'utilisateur

Relations fondamentales entre classes

3 relations fondamentales
o Héritage: généralisation / spécialisation

Symbolisé par «est une version spéecialisee de» («is a»)
o Agrégation / composition

Symbolisé par «contient», «regroupe» («has a»)

o Association: communication
Symbolisé par «communique avec» («uses a»)

Il existe d'autres relations mais celles-ci sont
guasi unanimement reconnues !

Heéritage

Concept naturel de généralisation / specialisation
o Classes représentees sous forme d'arbres généalogiques

Vocabulaire

o Classe spécialisée = sous-classe, classe fille / derivée
o Classe générale = super-classe, classe mere

o La classe spécialisée deérive de sa classe mere

ldee fondamentale

o Classe B dérivant de classe A

o B heérite de tous les attributs et méthodes de A
o B ajoute ses propres attributs et méthodes

Exemple d'héritage

ObjetGraphique

#NombreObjetsGraphigues : Entier
#Couleur : TypeCouleur

#X : Entier

#Y : Entier

#Epaisseur : Entier Classe de base :
+Créer() concept général
+Détruire()

+getX() : Entier

+getY() : Entier

+setX(valeur : Entier)

+setY (valeur : Entier)

+DeplacerVers(versX : Entier, versY : Entier)
+Afficher()

+Effacer()

Classes dérivées :
concept spécialisé

Ligne Cercle
#Longueur : Entier #Rayon : Entier
#Angle : Réel +Créer()
+Créer() +Detruire()
+Detruire() +getRayon() : Entier
+getLongueur() : Entier +setRayon(valeur : Entier)
+setLongueur(valeur : Entier) +Afficher()
+Afficher() +Effacer()
+Effacer()

Classe deérivée

Reprend les caractéristiques de la classe mere
o Attributs
o Méthodes

Ajoute / modifie les siennes

o Attributs (instances ou classe)

o Methodes (instances ou classe)

o Attention: les membres de classe ne sont pas hérités

Peut répondre a de nouveaux messages

Peut répondre differemment aux messages de la classe mere
o Polymorphisme

Utilisation de 1'héritage

Principe de substitution de Liskov
o Partout ou un objet de la super-classe est utilisé
on peut le remplacer par un objet d'une sous-classe

Construction d'un systeme ex nihilo

o ldentifier tous les composants

o Factoriser les caracteristigues communes entre classes
o Geénéraliser

Extension d'un systeme existant

o ldentifier les différences avec les classes existantes

o Ajouter les nouvelles classes dans le graphe d'héritage
o «Programmation differentielle»

Classe abstraite

Classe abstraite = classe qui ne peut pas étre instanciée

o Deéfinit au moins une méthode abstraite
Sans implémentation

o Peut définir des attributs

Utilisée comme super-classe d'une hierarchie

o Exemple: Véhicule, ObjetGraphique
Aucun intérét (ou sens) d'avoir des instances
Instances créées dans les classes dérivées
Support pour le polymorphisme

Classe abstraite pure: modélise un «concept»
o Toutes les méthodes sont abstraites
o Similaire a une interface

Avantages de 1'héritage

o Partage de code
Réutilisabilité et fiabilité
Code des classes les plus hautes dans la hiérarchie
utilisé plus souvent = fiabilisation plus rapide

2 Modélisation d'un concept naturel
o Quantité de code source réduite (factorisation)

o Maintenance facilitée
Héritage = code factorisé
Modification de I'implémentation d'une classe sans impact
2 Sur la hiérarchie d'héritage
Modification de l'interface d'une classe sans impact
O Sur ses ancétres

Dangers de 1'héritage (1/2)

Attention a la hiérarchie

o Trop lourde, elle peut nuire a l'efficacité

7 et a la compréhension du code

o lci, une classe intermeédiaire peut étre inutile

Base

Feuille 1 Intermédiaire 1 Solution
o Fusionner Intermédiairel et Intermédiaire2
Intermédiaire 2 Exemple d'une classe
intermédiaire superflue
[T (Intermédiaire 1 ou 2)

Feuille 2 Feuille 3

Dangers de 1'héritage (2/2)

Violation du principe d'encapsulation

o Acces aux membres protéges de la classe mere
2 niveaux d'interface

o Violation (théorique): hériter pour acceder aux membres
o Problemes de maintenabilité

Héritage de construction

o Dériver sans respecter la géneralisation / specialisation
Attention a respecter le principe de Liskov
Dériver Rectangle de Ligne en ajoutant une largeur
Souvent, I'agregation est plus adaptée

o Dériver alors qu'un attribut suffirait
Dériver des animaux en fonction de la couleur du pelage
Manque de discrimination fonctionnelle

Interface

Alternative a I'héritage multiple
o Classe = interface + impléementation

o Heéritage multiple = problemes dans I'héritage des
Implémentations

Interface

o Ensemble de méthodes abstraites

o Similaire a une classe abstraite pure sans attribut
o Définit une fonctionnalité (e.g. «clonable» en Java)

Vocabulaire
o Une classe implémente une interface

Héritage multiple vs. interfaces multiples
o Hériter du concept primordial
o Implémenter des interfaces

Exemple: AWACS

Avion Radar Interface Détecteur Interface MVolante
i E 0 K
AWACS 2.3
AWACS 2.2
AWACS 2.1

AWACS 1 pointillés = implémentation d’interfaceﬁ

Polymorphisme (1/2)

Une méme methode prend plusieurs formes

Forme faible: la surcharge de nom

Q

Q
Q
Q

Méme nom pour plusieurs methodes
Différence sur les parametres: nombre et type
Exemple-type: surcharge des opérateurs

Pas vraiment un concept objet

Forme forte: le polymorphisme dynamique

Q

O O O O

Méthode redéfinie dans une sous-classe
Comportement différent le long d'une hiérarchie
Parametres strictement identiques

Différence sur le type véritable de I'objet

Exemple-type: affichage d'une liste hétérogene d'objets

Polymorphisme (2/2)

Souvent utilisé dans les agregats

Nécessite

a Une hiérarchie de classes
Voir I'héritage

o Une méthode virtuelle
Table des méthodes virtuelles

Utilise la compatibilité descendante des pointeurs (et références)
o Classe B dérivant de classe A

o ptr 1 pointeur/réféerence sur une instance de A

o ptr 2 pointeur/référence sur une instance de B

o ptrl — ptr2estvalide

Repose sur la liaison differée (dynamic dispatch)

Les interfaces apportent aussi le polymorphisme dynamique

Agrégation

Modélisation du groupage
o Appartenance
0 «est compose de»

Agrégation vs. composition
o Agrégation: agrégé indéependant de l'agregeant
o Composition: vie de l'agrégé dépend de l'agrégeant

Modele naturel des conteneurs
o Souvent, cardinalité 1-N
o 1 agrégeant contient N agrégés

Composition vs. héritage (1/2)

Utiliser la composition pour remplacer I'héritage
o Une classe encapsule une autre plutot que d'en hériter
o Attribution de caractéristiques sans lien de type

Permet d'éviter un héritage conceptuellement bancal
o Une erreur classique

Evite un acces aux données membres
o Respecte mieux la notion d'interface
o Respect de I'encapsulation

Parfois appelé «délégation» (cf. GoF — Gang of Four)

o Messages envoyés a l'objet qui encapsule
delégues a l'objet encapsulé

Composition vs. héritage (2/2)

Exemple: AWACS

o Avion contenant un Radar (AWACS 3.1)

o Radar porté par un Avion (AWACS 3.2)

o Ensemble comprenant un Avion et un Radar (AWACS 3.3)

Avion Radar

AWACS 31k L < AWACS 3.2

<AWACS 3.3

Association

Modelise des relations plus «floues»
o «utilise», «est associé a», «communigue avec»

Caractéristiqgues

o Habituellement nommée
o Cardinalités M-N

Association vs. agrégation

o L'agrégation est une forme d'association

o Pas toujours évident de les différencier

o Aggrégation: notion de parties / déecomposition
d

Les moyens d'implémentations sont les mémes
Attributs objets, reférences ou pointeurs

