1S

PARTIE II
Rappels de C++

Christophe Duhamel
Bruno Bachelet

Luc Touraille

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012

Langage C++

Caractéeristigues genérales
o Historigue
o Héritage des autres langages

POO en C++

o Définition d'une classe
o Cycle de vie des objets
o Relations entre classes

Autres concepts

o Geénéricité

o EXxceptions

o Surcharge d'opérateurs

Caracteristiques générales

Origines

o Travaux de Bjarne Stroustrup (AT&T Bell)
«C with classes» (80) — C++ (83)
Normalisation en 98 (ISO/IEC 98-14882)
Depuis 2003, norme C++ 03

Mi-2011, nouvelle norme C++ 1x

U O O O

Langage orienté objet («— SIMULA 67)
o Typage fort
o Maintien des types primitifs et des fonctions

Support de la genéricité et des exceptions («— ADA 79)

Surcharge des opérateurs («— ALGOL 68)

C# Géneéalogie

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Java

l'l l,, /ﬁ
Eiffel | ;
N*\ lll l’, , 1 =
L % Objective C
N da —— > C++ » 30
Vo S d [généricité, exception -

-~

opérateurs

Algol

Méthodes et outils de développem /ZZ3 - 2011-2012

32

Maormalized fraction of total hits (%)

«Popularité» des langages

Tiobe Index (Septembre 2011) — www.tiobe.com
o Basé sur résultats moteurs de recherche = discutable
o Mais fournit tout de méme une tendance

Tiobe Programming Community Index

275
Programming Position Position Position Position
25.0 - Language Sep 2011 Sep 2006 Sep 1996 Sep 1986
225 4 Java 1 1 5
C 2 2 1 1
200
C++ 3 3 2 5
17 5
C# 4 8
150 -
PHP 5 5
12.5 -
100 Objective-C 6 39
(Visual) Basic 7 4 3 6
7.5
5.0 Python 8 7 23
25 Perl 9 6 6
e O . — e — JavaScript 10 9 21
’ 2002 2003 2004 2005 2008 2007 2008 2009 2010 2011 _
) Lisp 14 14 13 3
Time
— Java — C++ — PHP (Visual) Basic — Perl Ada 18 19 10 2

- — C# Ohjective-C Python = Javascript

Type référence (1/4)

En C, parametres uniquement passes par valeur

o Passage en mode in/out = «passage par adresse»
Passe (par valeur) I'adresse de la variable

a2 Consequences
Code peu lisible, passage de pointeurs, source d'erreurs

En C++, utilisation de réferences (&)

o Référence = nouvel alias d'une variable

o Utilisation identique a une variable

2 Pointeur masque, simulant le passage par reféerence
o Pour les méthodes inline, vrai passage par réference

Type référence (2/4)

= AlamodeC

= Ala mode C++

void swap (Int * a,

c= *b;

int char

{

main (int

nt 1=5,]=6;
swap (&, &));
return O;

nt * b void swap (int
{
nt c=bh;
b=a,
a=_c;
}
) nt - main (int
{
nt 1=5,]=6;
swap (I, J);
return 0;
}

& a, Int

char **)

& b)

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012

35

Type référence (3/4)

Avantages

o Code plus lisible
0 Appel plus simple
a2 Moins d'erreurs

o Efficace

Inconvenients
0 Syntaxe ambigué a cause de «&»
o Peu evident a comprendre au départ

Type référence (4/4)

Déclaration d'une référence

0 Se déclare «<comme» un pointeur

o Se comporte comme un alias sur 'objet

o Neécessite un objet referencé a la declaration
o Ne peut changer d'objet par la suite

| =5;

&j=1;
j = 4; I/ maintenant i=4 !

Référencer quoi ?

o Une référence est toujours liee a une variable
o Elle ne peut pas étre liee a une constante

o La référence nulle n'existe pas !

Régles d'usage des types: consg référence ?

Passage d'arguments

Type primitif T Classe C
Argument variable T & arg C & arg
T arg
Argument constant ou const C & arg
const T & arg

Retour de variable

Type primitif T Classe C

T m(...) const;
ou const C & m(...) const;
const T & m(...) const;

Retour (mode lecture)
d'un attribut

Retour (mode lecture/écriture)

d'un attribut T&m(...); C&m(...);

Retour d'un résultat

: 2 T m(... t; t;
produit par une methode m(...) cons C m(...) cons

Allocation dynamique

En C, couple malloc /[free
En C++, couple new / delete

Pour allouer une donnée
nt * iptr = new int;

delete iptr;

Pour allouer un tableau
nt * ptr = new int[10];

delete[] iptr;

Réalisent aussi la construction / destruction
o new = allocation mémoire + appel constructeur
o delete = appel destructeur + libération memoire

Plus de malloc /free !

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 39

Entrées / sorties

En C, couple printf [/ scanf (et consorts)

En C++, mécanisme de flux
o Bibliotheque standard (namespace «std »)

o Flux standard std::cin | std::cout et std::cerr
a Inclusion de <jostream >

o Pour lire depuis le flux en entrée
X; J;
X j;
o Pour envoyer dans le flux en sortie

X; i
X << 44 j “ = X + end!;

o Pour les fichiers: <fstream >

La POO en C++

Les classes en C++
o Déclaration / définition
o Cycle de vie des objets

Les relations entre classes
o Agrégation

o Héritage

o Association

La genericitée
o Fonctions
o Classes

Les exceptions

Les opérateurs

Déclaration d'une classe (1/2)

Mot-clé «class »
Contient les attributs et les prototypes des méthodes

Modificateurs d'acces
o public : membre accessible par tous
Réservé exclusivement aux méthodes de l'interface
o private : membre accessible aux méthodes de la classe

Pour les attributs
Pour les méthodes non destinées a l'utilisateur

o protected : membre accessible aux méthodes de la classe
et de ses sous-classes

Assouplit I'acces privé a des fins de surcharge dans les sous-classes

Modificateur «static »
o Définit un membre de classe

Déclaration d'une classe (2/2)

class Point

_ private:
Point Nt absc;
-absc_ : entier Int _ QrdO;]
-ordo_ : entier static Int nb_p0|ntS;
-NbPoints : entier _
+x() : entier pUbllC_: _ _
+y() : entier Point(int x, Iint y);
+move(incX : entier, incY : entier) " : .
+moveTo(X : entier, Y : entier) Int X(VO!d) COnSt :
+NbPoints() : entier nt y(void) const ;
void move(int ,int);

void moveTo(int ,int);
static Int nbPoints(void);

',
™~
\ Attention !

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012

Définition d'une classe

Point::Point(ntx, inty){
absc = x;
ordo =,
nb_points++;
}
nt Point::x(void) const { return absc; }

void Point:move(int IncX, int IncY){

}

absc +=iIncX;
ordo +=IncY;

static Int Point::nbPoints(void){ return nb_points; }

static int Point::nb_points = 0; // Attribut de classe

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 44

Méthodes «inline» (1/2)

Appel méethode = colt d'exécution

Parfois, dommage d'utiliser un appel de methode
o Pour récupéerer la valeur d'un attribut
o Pour un traitement simple

Methode «inline»: développée comme une macro
o S'applique aussi aux fonctions

Avantage
o Rapidité d'execution (colt appel + optimisation supplémentaire)

Méthodes «nline» (2/2)

Inconveénients

o Augmentation taille exécutable
A utiliser donc sur des méthodes courtes

o Implémentation dans la partie déclaration de la classe
Ou dans un fichier d'entéte

Implémentation

o Définition avec la déclaration
Point {

X() { absc; }

%

o Utilisation du mot-clé «inline » (indication au compilo)
Point::x() { absc; }

Structure du code source

Fichier entéte Fichier implémentation
o Déclaration de la classe o Définition variables de classe
o Définition méthodes «inline» o Définitions méthodes
__ CLASSE H
__ CLASSE H
: "classe.h"
/I Includes

/| forward déclaration I/ init. des variables

/] de classe
Classe
{ /I définition des méthodes
/] attributs /| externalisées

// proto méthodes
/[méthodes inline

J

Cycle de vie des objets

Construction
o Réservation mémoire
o Appel d'un constructeur

Vie
o Appel des méthodes

Destruction
0 Appel du destructeur
o Libération mémoire

Constructeurs

Role: initialiser les objets

Syntaxe

2 Méme nom que la classe

0 Pas de type de retour

o Surcharge (statigue) a volonté

o Une particularité: la liste d'initialisation

Exemples

Point::Point 0{ ...}

Point::Point(X, v{ ...}
Point::Point(Point & p) { .

Liste d'initialisation (1/2)

Syntaxe
o nom_classe(...) : liste initialisation { ...}
o Liste = nom_attribut(valeur), nom_attribut(valeur) ...

o Les valeurs peuvent étre des expressions
Calcul, appel de fonction...

Role: initialisation des attributs d'un objet
o Méme sans liste, initialisation avant le bloc de code

Construction de chacun des attributs

o Dans l'ordre de déclaration

o Dong, il faut lister les attributs dans l'ordre de déclaration

o Siun attribut est omis dans la liste = construction par défaut
o Les attributs de type référence obligatoirement dans la liste

Liste d'initialisation (2/2)

= Respecter l'ordre des attributs

class Rationnel

{

private:
Nt num;
nt den;

public:
ionnel(int
. den(d

n=0, Int

= Initialisation plus complexe
o Ajout d'un attribut distance
o Distance du point a l'origine

avec code

Point::Point(nt x, Int y):
absc(x), ordo(y)

{
dist = sqrt (X*X+y*y);

}

Solution

Rationnel::Rationnel(Int

: num(n), den(d)
{}

ou tout dans la liste

Point::Point(nt x, int y):
absc(x), ordo(y),
dist(sqgrt (x*x+y*y))

{}

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 51

Création d'objets (1/2)

Trois types d'allocation (comme en C)
o Statique: variable globale, variable locale statique
o Automatique: variable locale sur la pile

o Dynamique: variable allouée sur le tas
new = allocation mémoire + appel constructeur
delete = appel destructeur + libération mémoire

Gestion mémoire

o Statigue et automatique: par le systeme
o Dynamique: par le programmeur

Création d'objets (2/2)

Moment de |la construction

o Variables globales: avant I'exécution du «main »

o Variables locales: a I'entrée dans le bloc
Variables locales statiques: a la 1°'¢ entrée

o Variables dynamiques: a l'exécution de «new»

Moment de la destruction

o Variables statiques: apres la sortie du «main »
Méme chose pour les variables locales statiques

o Variables locales sur la pile: a la sortie du bloc

o Variables dynamiques: a I'exéecution de «delete »

Méthodes constantes (1/3)

Utilisation du mot-clé «const » en fin de prototype

Indique les méthodes ne modifiant pas |'objet
o Qui ne modifient pas les attributs

Limité aux méthodes d'instance

Avantages

o Utilisable sur un objet constant
Une méthode «non constante» ne peut pas étre exécutée

o La méthode ne peut pas modifier les attributs
o Controlé a la compilation

Signification plus subtile
o «const » fait partie de la signature

o Possibilité de définir deux versions

Méthodes constantes (2/3)

= Définition d'accesseurs (version 1 — recommandée)
class Exemple {
protected: string s;

public:
const string & getS(void) const { return s; }
void setS(const string & X) { s=X; }

¥

= Ultilisation d'accesseurs
Exemple el;
const Exemple e2;

el.setS("nawouak"); = ok
e2.setS("nawouak"); = probleme
std::cout << el.getS() << std::endl, = 0ok

std::cout << e2.getS() << std::endl, = 0ok

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 55

Méthodes constantes (3/3)

= Définition d'accesseurs (version 2 — non recommandée)
class Exemple {
protected: string s;

public:
const string & getS(void) const { return s; }
string & getS(void) { return s; }

¥

= Ultilisation d'accesseurs
Exemple el;
const Exemple e2;

el.getS() = "nawouak"; = ok
e2.getS() = "nawouak"; = probleme
std::cout << el.getS() << std::endl, = 0ok

std::cout << e2.getS() << std::endl, = 0ok

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 56

Agrégation

Regrouper un ou plusieurs objets dans un autre = les attributs

Trois manieres d'agreger / trois types d'attributs

o Attribut objet: construit en méme temps que l'objet

o Attribut référence: initialisation obligatoire dans le constructeur
Pas de changement par la suite

o Attribut pointeur: peut étre initialisé n'importe quand
Attention a la forme normale de Coplien
Si la mémoire de l'attribut est gérée par la classe

Vie de I'objet agrégé

o Objet construit par l'agrégeant
Attribut objet ou pointeur

o Objet en provenance de l'extérieur
Recopie: attribut objet
Réference: attribut pointeur ou référence

Héritage (1/2)
Dériver une classe d'une ou plusieurs autres

Syntaxe: class derivee modificateur merel, modificateur mere2...

Modificateur conditionne la visibilité des membres de la classe mere

R Visibilité dans classe fille
Visibilité dans
classe mere Héritage Héritage
«public » «private »
public public private
protected protected private
private inaccessible inaccessible

Héritage (2/2)

Modificateur d'acces protected
o Visible des classes fille mais pas de |'extérieur

Utilisation classique de I'héritage
o Attributs protected + héritage public

Passer les attributs private en protected ?

o Avantage: accessibles directement

o Inconvénient: violation de I'encapsulation
Problemes de maintenabilité si héritage en cascade
Solution: méthodes protegées pour l'acces aux attributs

Héritage privé ?

Héritage privé = perte de l'interface

Raison 1: s'approprier I'implémentation
o Héritage bizarre

o L'agrégation peut étre utilisée a la place

0 A éviter donc

Raison 2: proposer une nouvelle interface
o Modéliser un «wrapper» = agregation

o Héritage privé = solution sans agregation

o Conservation du type original

Héritage et polymorphisme (7/2)

Rendre une méthode polymorphe (virtuelle): virtual

o Virtuelle un jour, virtuelle toujours !
Mot-clé «virtual » pas necessaire dans les sous-classes

o Peut étre redéfinie dans les sous-classes

Classe abstraite en C++
o Pas de mot-clé
o Classe abstraite = au moins une méthode abstraite

o Meéthode abstraite = méthode virtuelle pure

Pas de code
virtual type_retour nom_meéthode(arguments) = 0O;

o Redéfinir imperativement dans les sous-classes
Car tant qu'une méthode est abstraite = pas d'instanciation

Héritage et polymorphisme (2/2)

Hériter lI'implémentation de la classe mere
o classe_mere:: nom_méthode(arguments)

Exemple
class Personne {

virtual void afficher(void) const
{ cout << nom << " " << prenom; }

I3
class Etudiant : public Personne {
void afficher(void) const {

Personne::afficher();
cout << " " << ecole;

}
-

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012

62

Heéritage et constructeur

= Les constructeurs ne peuvent pas étre virtuels
o Pas d'héritage des constructeurs
o Mais sequence de construction prédéfinie

= Exemple: B hérite de A
o Construction B = Construction A, puis construction attributs de B

o class A{ _
protected: string s;

public:
A() {s=...; }
| A(string ss) { s=ss; }

class B : public A {
protected: string t;

public:
B(){s=...;t=...; } < B():AQ)){s=...;t=...;}
B(string ss,string tt) : A(ss),t(tt) {}

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 63

Heéritage et destructeur

Méthode virtuelle = destructeur virtuel
o Destruction impérativement polymorphe

o Exemple
vector<Point *> v;

for (int 1=0; i<v.size(); ++i) delete V[i];

Si destructeur polymorphe
o Appel destructeur sous-classe
o Puis appel destructeur super-classe

Si destructeur non-polymorphe
o Appel destructeur super-classe = incohérent !

Héritage virtuel (1/2)

= Heritage en diamant

A
o Duplication des attributs T
o class

LA){}}

class B: public A

{B(...) - A(..){}}

class C: public A

{CL.) TAC) TR

class D : public B, public C
{D(...) : B(..)C()k

o 2 appels au constructeur de A dans D
= attributs de A dupliqués dans D

_»m
_»O

= Collision des noms de méthode (ou attribut)
o Exemple: méthode A::x()
o D:x() signifie appel sur I'objet Aissude Boude C ?

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 65

Héritage virtuel (2/2)

= Solution: héritage «virtuel»

o class
{AC(.){}}
class B: virtual public
{B(..)tAC.) U
class C: wvirtual public

{C() AL) U

A

A

class D : public B, public

!

virtual

C

?

virtual

?

1D(...) - A(. 2 , B(..)C()4}

o Une seule copie de A
o Appel explicite au constructeur de A dans D

o Parametres destinés a A ignores dans les constructeurs de B et C

= Autres solutions: héritage d'interfaces ou délégation

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012

66

Surcharge opérateurs (1/3)

= Constructeurs
o Constructeur par défaut
= A(void);
o Constructeur de copie
= A(const A &);

= Affectation

o A & operator = (const A &X) {
... I Recopie de x dans «this»
return (*this);

o Retour de I'objet pour chainage: a = b = c;

= Opérations arithmeétiques / logiques binaires

o A operator + (const A& X, const A&Yy){
A resultat;
... Il Calcul de x+y
return resultat;

}

o bool operator == (const A & X, const A &Y);

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 67

Surcharge opérateurs (2/3)

= Opérations arithmétiques unaires
o Preéfixé
= A &operator ++ () {

. Il Incrémentation de «this»
return *this:

}

= Retour de I'objet: a = ++Db;

o Postfixé

= A operator ++ (int) {
A copie = *this;
./l Incrémentation de «this»
return copie;

}

= Retour d'une copie avant incrément: a = b++;

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 68

Surcharge opérateurs (3/3)

= Opérateurs de flux

o Ecriture
= Ostream & operator << (ostream & flux,const A & X)

{
... Il Ecriture de x dans le flux
return flux:

}

= Retour du flux: f << a << b:

o Lecture

= Istream & operator >> (istream & flux, A & X) {
... Il Lecture du flux dans x
return flux;

}

o Ne jamais passer un flux par copie !

= Autres symboles
a 0L .*,, ..

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 69

Opérateurs de conversion

» Par un constructeur
o classA{... A(const B&); ... };

o Attention: conversion automatique !
= Vvoid f(const A &);
m B b;
n f(b); — Construction d'un objet intermédiaire A

o Possibilité de forcer I'explicitation
= explicit A(const B &);
= f(b); = erreur de compilation
n f(A(b)); — obligation d'expliciter la conversion

= Opérateur de conversion (= conversion implicite)
class B {

public: operator A(void) {
A a;
./l Conversion de «this» dans a
return a;

}
%

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 70

