
Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 29

PPARTIEARTIE IIII

Rappels de C++Rappels de C++

Christophe DuhamelChristophe Duhamel

Bruno BacheletBruno Bachelet

Luc TourailleLuc Touraille

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 30

Langage C++Langage C++

� Caractéristiques générales
� Historique
� Héritage des autres langages

� POO en C++
� Définition d'une classe
� Cycle de vie des objets
� Relations entre classes

� Autres concepts
� Généricité
� Exceptions
� Surcharge d'opérateurs

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 31

CaractCaractééristiques gristiques géénnééralesrales

� Origines
� Travaux de Bjarne Stroustrup (AT&T Bell)
� «C with classes» (80) → C++ (83)
� Normalisation en 98 (ISO/IEC 98-14882)
� Depuis 2003, norme C++ 03
� Mi-2011, nouvelle norme C++ 1x

� Langage orienté objet (← SIMULA 67)
� Typage fort
� Maintien des types primitifs et des fonctions

� Support de la généricité et des exceptions (← ADA 79)

� Surcharge des opérateurs (← ALGOL 68)

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 32

70

80

90

60

GGéénnééalogiealogie

généricité, exceptions

opérateurs

classes

base

Simula

Pascal

Algol

C
Smalltalk

Objective C
Eiffel

Delphi

Ada

Java

C++

C#

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 33

««PopularitPopularité»é» des langagesdes langages

� Tiobe Index (Septembre 2011) – www.tiobe.com
� Basé sur résultats moteurs de recherche ⇒ discutable
� Mais fournit tout de même une tendance

Programming
Language

Position
Sep 2011

Position
Sep 2006

Position
Sep 1996

Position
Sep 1986

Java 1 1 5 -

C 2 2 1 1

C++ 3 3 2 5

C# 4 8 - -

PHP 5 5 - -

Objective-C 6 39 - -

(Visual) Basic 7 4 3 6

Python 8 7 23 -

Perl 9 6 6 -

JavaScript 10 9 21 -

Lisp 14 14 13 3

Ada 18 19 10 2

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 34

Type rType rééfféérence rence (1/4)(1/4)

� En C, paramètres uniquement passés par valeur
� Passage en mode in/out ⇒ «passage par adresse»

� Passe (par valeur) l'adresse de la variable

� Conséquences
� Code peu lisible, passage de pointeurs, source d'erreurs

� En C++, utilisation de références (&)
� Référence = nouvel alias d'une variable
� Utilisation identique à une variable
� Pointeur masqué, simulant le passage par référence
� Pour les méthodes inline, vrai passage par référence

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 35

Type rType rééfféérence rence (2/4)(2/4)

void swap (int * a, int * b)

{

int c = * b;

* b = * a;

* a = c;

}

int main (int , char **)

{

int i = 5, j = 6;

swap (&i, &j);

return 0;

}

void swap (int & a, int & b)

{

int c = b;

b = a;

a = c;

}

int main (int , char **)

{

int i = 5, j = 6;

swap (i, j);

return 0;

}

� A la mode C � A la mode C++

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 36

Type rType rééfféérence rence (3/4)(3/4)

� Avantages
� Code plus lisible
� Appel plus simple
� Moins d'erreurs
� Efficace

� Inconvénients
� Syntaxe ambiguë à cause de «&»

� Peu évident à comprendre au départ

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 37

Type rType rééfféérence rence (4/4)(4/4)

� Déclaration d'une référence
� Se déclare «comme» un pointeur
� Se comporte comme un alias sur l'objet
� Nécessite un objet référencé à la déclaration
� Ne peut changer d'objet par la suite

int i = 5;
int & j = i;
j = 4; // maintenant i=4 !

� Référencer quoi ?
� Une référence est toujours liée à une variable
� Elle ne peut pas être liée à une constante
� La référence nulle n'existe pas !

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 38

RRèègles d'usage des types: gles d'usage des types: constconst, r, rééfféérence ?rence ?

const C & arg
T arg

ou
const T & arg

Argument constant

C & argT & argArgument variable

Classe CType primitif T

C m(…) const;T m(…) const;Retour d'un résultat
produit par une méthode

C & m(…);T & m(…);Retour (mode lecture/écriture)
d'un attribut

const C & m(…) const;
T m(…) const;

ou
const T & m(…) const;

Retour (mode lecture)
d'un attribut

Classe CType primitif T

Passage d'arguments

Retour de variable

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 39

Allocation dynamiqueAllocation dynamique

� En C, couple malloc / free

� En C++, couple new / delete

� Pour allouer une donnée
int * iptr = new int;
…
delete iptr;

� Pour allouer un tableau
int * iptr = new int[10];
…
delete[] iptr;

� Réalisent aussi la construction / destruction
� new = allocation mémoire + appel constructeur
� delete = appel destructeur + libération mémoire

� Plus de malloc / free !

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 40

EntrEntréées / sortieses / sorties

� En C, couple printf / scanf (et consorts)

� En C++, mécanisme de flux
� Bibliothèque standard (namespace «std »)
� Flux standard std::cin , std::cout et std::cerr

� Inclusion de <iostream >

� Pour lire depuis le flux en entrée
double x; int j;
cin >> x >> j;

� Pour envoyer dans le flux en sortie
double x; int j;
cout << x << “ + “ << j << “ = “ << x + j << endl;

� Pour les fichiers: <fstream >

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 41

La POO en C++La POO en C++

� Les classes en C++
� Déclaration / définition
� Cycle de vie des objets

� Les relations entre classes
� Agrégation
� Héritage
� Association

� La généricité
� Fonctions
� Classes

� Les exceptions

� Les opérateurs

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 42

DDééclaration d'une classe claration d'une classe (1/2)(1/2)

� Mot-clé «class »

� Contient les attributs et les prototypes des méthodes

� Modificateurs d'accès
� public : membre accessible par tous

� Réservé exclusivement aux méthodes de l'interface
� private : membre accessible aux méthodes de la classe

� Pour les attributs
� Pour les méthodes non destinées à l'utilisateur

� protected : membre accessible aux méthodes de la classe
et de ses sous-classes

� Assouplit l'accès privé à des fins de surcharge dans les sous-classes

� Modificateur «static »
� Définit un membre de classe

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 43

DDééclaration d'une classe claration d'une classe (2/2)(2/2)

class Point
{

private:
int absc;
int ordo;
static int nb_points;

public:
Point(int x, int y);
int x(void) const ;
int y(void) const ;
void move(int , int);
void moveTo(int , int);
static int nbPoints(void);

} ;;

Attention !

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 44

Point::Point(int x, int y) {
absc = x;
ordo = y;
nb_points++;

}

int Point::x(void) const { return absc; }

void Point::move(int incX, int incY) {
absc += incX;
ordo += incY;

}

static int Point::nbPoints(void) { return nb_points; }

static int Point::nb_points = 0; // Attribut de classe

DDééfinition d'une classefinition d'une classe

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 45

� Appel méthode ⇒ coût d'exécution

� Parfois, dommage d'utiliser un appel de méthode
� Pour récupérer la valeur d'un attribut
� Pour un traitement simple

� Méthode «inline»: développée comme une macro
� S'applique aussi aux fonctions

� Avantage
� Rapidité d'exécution (coût appel + optimisation supplémentaire)

MMééthodes thodes ««inlineinline»» (1/2)(1/2)

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 46

� Inconvénients
� Augmentation taille exécutable

� A utiliser donc sur des méthodes courtes
� Implémentation dans la partie déclaration de la classe

� Ou dans un fichier d'entête

� Implémentation
� Définition avec la déclaration

class Point {

…

int x(void) const { return absc; }

…

};

� Utilisation du mot-clé «inline » (indication au compilo)
inline int Point::x(void) const { return absc; }

MMééthodes thodes ««inlineinline»» (2/2)(2/2)

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 47

Structure du code sourceStructure du code source

� Fichier entête
� Déclaration de la classe
� Définition méthodes «inline»

� Fichier implémentation
� Définition variables de classe
� Définitions méthodes

#ifndef __CLASSE_H__

#define __CLASSE_H__

// includes

// forward déclaration

class Classe

{

// attributs

// proto méthodes

// méthodes inline

};

#endif

#include "classe.h"

// init. des variables

// de classe

// définition des méthodes

// externalisées

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 48

Cycle de vie des objetsCycle de vie des objets

� Construction
� Réservation mémoire
� Appel d'un constructeur

� Vie
� Appel des méthodes

� Destruction
� Appel du destructeur
� Libération mémoire

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 49

ConstructeursConstructeurs

� Rôle: initialiser les objets

� Syntaxe
� Même nom que la classe
� Pas de type de retour
� Surcharge (statique) à volonté
� Une particularité: la liste d'initialisation

� Exemples
Point::Point () { …}

Point::Point(int x, int y) { …}

Point::Point(const Point & p) { …}

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 50

Liste d'initialisation Liste d'initialisation (1/2)(1/2)

� Syntaxe
� nom_classe(…) : liste_initialisation { …}

� Liste = nom_attribut(valeur), nom_attribut(valeur) …

� Les valeurs peuvent être des expressions
� Calcul, appel de fonction…

� Rôle: initialisation des attributs d'un objet
� Même sans liste, initialisation avant le bloc de code

� Construction de chacun des attributs
� Dans l'ordre de déclaration
� Donc, il faut lister les attributs dans l'ordre de déclaration

� Si un attribut est omis dans la liste ⇒ construction par défaut
� Les attributs de type référence obligatoirement dans la liste

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 51

class Rationnel
{

private:
int num;
int den;

public:
Rationnel(int n=0, int d=1)
: den(d), num(n)
{}

};

� Initialisation plus complexe
� Ajout d'un attribut distance
� Distance du point à l'origine

Rationnel::Rationnel(int n=0,
int d=1)

: num(n), den(d)
{}

Point::Point(int x, int y) :

absc(x), ordo(y)

{
dist = sqrt (x*x+y*y);

}

Point::Point(int x, int y) :

absc(x), ordo(y),
dist(sqrt (x*x+y*y))

{}

avec code

ou tout dans la listeSolution

� Respecter l'ordre des attributs

Liste d'initialisation Liste d'initialisation (2/2)(2/2)

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 52

CrCrééation d'objets ation d'objets (1/2)(1/2)

� Trois types d'allocation (comme en C)
� Statique: variable globale, variable locale statique
� Automatique: variable locale sur la pile
� Dynamique: variable allouée sur le tas

� new = allocation mémoire + appel constructeur
� delete = appel destructeur + libération mémoire

� Gestion mémoire
� Statique et automatique: par le système
� Dynamique: par le programmeur

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 53

CrCrééation d'objets ation d'objets (2/2)(2/2)

� Moment de la construction
� Variables globales: avant l'exécution du «main »

� Variables locales: à l'entrée dans le bloc
� Variables locales statiques: à la 1ère entrée

� Variables dynamiques: à l'exécution de «new»

� Moment de la destruction
� Variables statiques: après la sortie du «main »

� Même chose pour les variables locales statiques

� Variables locales sur la pile: à la sortie du bloc
� Variables dynamiques: à l'exécution de «delete »

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 54

MMééthodes constantes thodes constantes (1/3)(1/3)
� Utilisation du mot-clé «const » en fin de prototype

� Indique les méthodes ne modifiant pas l'objet
� Qui ne modifient pas les attributs

� Limité aux méthodes d'instance

� Avantages
� Utilisable sur un objet constant

� Une méthode «non constante» ne peut pas être exécutée
� La méthode ne peut pas modifier les attributs
� Contrôlé à la compilation

� Signification plus subtile
� «const » fait partie de la signature
� Possibilité de définir deux versions

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 55

MMééthodes constantes thodes constantes (2/3)(2/3)

� Définition d'accesseurs (version 1 – recommandée)
class Exemple {

protected: string s;

public:
const string & getS(void) const { return s; }
void setS(const string & x) { s=x; }

};

� Utilisation d'accesseurs
Exemple e1;
const Exemple e2;

e1.setS("nawouak"); ⇒⇒⇒⇒ ok
e2.setS("nawouak"); ⇒⇒⇒⇒ problème
std::cout << e1.getS() << std::endl; ⇒⇒⇒⇒ ok
std::cout << e2.getS() << std::endl; ⇒⇒⇒⇒ ok

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 56

MMééthodes constantes thodes constantes (3/3)(3/3)

� Définition d'accesseurs (version 2 – non recommandée)
class Exemple {

protected: string s;

public:
const string & getS(void) const { return s; }
string & getS(void) { return s; }

};

� Utilisation d'accesseurs
Exemple e1;
const Exemple e2;

e1.getS() = "nawouak"; ⇒⇒⇒⇒ ok
e2.getS() = "nawouak"; ⇒⇒⇒⇒ problème
std::cout << e1.getS() << std::endl; ⇒⇒⇒⇒ ok
std::cout << e2.getS() << std::endl; ⇒⇒⇒⇒ ok

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 57

AgrAgréégationgation

� Regrouper un ou plusieurs objets dans un autre = les attributs

� Trois manières d'agréger / trois types d'attributs
� Attribut objet: construit en même temps que l'objet
� Attribut référence: initialisation obligatoire dans le constructeur

� Pas de changement par la suite
� Attribut pointeur: peut être initialisé n'importe quand

� Attention à la forme normale de Coplien
� Si la mémoire de l'attribut est gérée par la classe

� Vie de l'objet agrégé
� Objet construit par l'agrégeant

� Attribut objet ou pointeur
� Objet en provenance de l'extérieur

� Recopie: attribut objet
� Référence: attribut pointeur ou référence

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 58

HHééritage ritage (1/2)(1/2)

� Dériver une classe d'une ou plusieurs autres

� Syntaxe: class derivee : modificateur mere1, modificateur mere2…

� Modificateur conditionne la visibilité des membres de la classe mère

inaccessibleinaccessibleprivate

privateprotectedprotected

privatepublicpublic

Héritage
«private »

Héritage
«public »

Visibilité dans classe fille
Visibilité dans
classe mère

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 59

HHééritage ritage (2/2)(2/2)

� Modificateur d'accès protected

� Visible des classes fille mais pas de l'extérieur

� Utilisation classique de l'héritage
� Attributs protected + héritage public

� Passer les attributs private en protected ?
� Avantage: accessibles directement
� Inconvénient: violation de l'encapsulation

� Problèmes de maintenabilité si héritage en cascade
� Solution: méthodes protégées pour l'accès aux attributs

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 60

HHééritage privritage privéé ??

� Héritage privé ⇒ perte de l'interface

� Raison 1: s'approprier l'implémentation
� Héritage bizarre
� L'agrégation peut être utilisée à la place
� A éviter donc

� Raison 2: proposer une nouvelle interface
� Modéliser un «wrapper» ⇒ agrégation
� Héritage privé ⇒ solution sans agrégation
� Conservation du type original

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 61

HHééritage et polymorphisme ritage et polymorphisme (1/2)(1/2)

� Rendre une méthode polymorphe (virtuelle): virtual

� Virtuelle un jour, virtuelle toujours !
� Mot-clé «virtual » pas nécessaire dans les sous-classes

� Peut être redéfinie dans les sous-classes

� Classe abstraite en C++
� Pas de mot-clé
� Classe abstraite ⇒ au moins une méthode abstraite
� Méthode abstraite = méthode virtuelle pure

� Pas de code
� virtual type_retour nom_méthode(arguments) = 0;

� Redéfinir impérativement dans les sous-classes
� Car tant qu'une méthode est abstraite ⇒ pas d'instanciation

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 62

HHééritage et polymorphisme ritage et polymorphisme (2/2)(2/2)

� Hériter l'implémentation de la classe mère
� classe_mère:: nom_méthode(arguments)

� Exemple
class Personne {

…
virtual void afficher(void) const
{ cout << nom << " " << prenom; }
…

};

class Etudiant : public Personne {
…
void afficher(void) const {

Personne::afficher();
cout << " " << ecole;

}
…

};

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 63

HHééritage et constructeurritage et constructeur
� Les constructeurs ne peuvent pas être virtuels

� Pas d'héritage des constructeurs
� Mais séquence de construction prédéfinie

� Exemple: B hérite de A
� Construction B = Construction A, puis construction attributs de B
� class A {

protected: string s;

public:
A() { s=…; }
A(string ss) { s=ss; }

};

class B : public A {
protected: string t;

public:
B() { s=…; t=…; } � B() : A(),t() { s=…; t=…; }
B(string ss,string tt) : A(ss),t(tt) {}

};

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 64

HHééritage et destructeurritage et destructeur

� Méthode virtuelle ⇒ destructeur virtuel
� Destruction impérativement polymorphe
� Exemple

vector<Point *> v;

…

for (int i=0; i<v.size(); ++i) delete v[i];

� Si destructeur polymorphe
� Appel destructeur sous-classe
� Puis appel destructeur super-classe

� Si destructeur non-polymorphe
� Appel destructeur super-classe ⇒ incohérent !

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 65

HHééritage virtuel ritage virtuel (1/2)(1/2)

� Héritage en diamant

� Duplication des attributs
� class A

{ A(…) {} };

class B : public A
{ B(…) : A(…) {} };

class C : public A
{ C(…) : A(…) {} };

class D : public B, public C
{ D(…) : B(…), C(…) {} };

� 2 appels au constructeur de A dans D
⇒ attributs de A dupliqués dans D

� Collision des noms de méthode (ou attribut)
� Exemple: méthode A::x()
� D::x() signifie appel sur l'objet A issu de B ou de C ?

B

A

C

D

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 66

HHééritage virtuel ritage virtuel (2/2)(2/2)

� Solution: héritage «virtuel»
� class A

{ A(…) {} };

class B : virtual public A
{ B(…) : A(…) {} };

class C : virtual public A
{ C(…) : A(…) {} };

class D : public B, public C
{ D(…) : A(…) , B(…), C(…) {} };

� Une seule copie de A
� Appel explicite au constructeur de A dans D
� Paramètres destinés à A ignorés dans les constructeurs de B et C

� Autres solutions: héritage d'interfaces ou délégation

B

A

C

D

virtual virtual

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 67

Surcharge opSurcharge opéérateurs rateurs (1/3)(1/3)
� Constructeurs

� Constructeur par défaut
� A(void);

� Constructeur de copie
� A(const A &);

� Affectation
� A & operator = (const A & x) {

… // Recopie de x dans «this»
return (*this);

}
� Retour de l'objet pour chaînage: a = b = c;

� Opérations arithmétiques / logiques binaires
� A operator + (const A & x, const A & y) {

A resultat;
… // Calcul de x+y
return resultat;

}
� bool operator == (const A & x, const A & y);

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 68

Surcharge opSurcharge opéérateurs rateurs (2/3)(2/3)

� Opérations arithmétiques unaires
� Préfixé

� A & operator ++ () {
… // Incrémentation de «this»
return *this;

}

� Retour de l'objet: a = ++b;

� Postfixé
� A operator ++ (int) {

A copie = *this;
… // Incrémentation de «this»
return copie;

}

� Retour d'une copie avant incrément: a = b++;

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 69

Surcharge opSurcharge opéérateurs rateurs (3/3)(3/3)

� Opérateurs de flux
� Ecriture

� ostream & operator << (ostream & flux,const A & x)
{

… // Ecriture de x dans le flux
return flux;

}

� Retour du flux: f << a << b;

� Lecture
� istream & operator >> (istream & flux, A & x) {

… // Lecture du flux dans x
return flux;

}

� Ne jamais passer un flux par copie !

� Autres symboles
� () , [] , * , , …

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 70

OpOpéérateurs de conversionrateurs de conversion
� Par un constructeur

� class A { … A(const B &); … };
� Attention: conversion automatique !

� void f(const A &);
� B b;
� f(b); ⇒ Construction d'un objet intermédiaire A

� Possibilité de forcer l'explicitation
� explicit A(const B &);
� f(b); ⇒ erreur de compilation
� f(A(b)); ⇒ obligation d'expliciter la conversion

� Opérateur de conversion (⇒ conversion implicite)
class B {

…
public: operator A(void) {

A a;
… // Conversion de «this» dans a
return a;

}
};

