1S

PARTIE 111

Généricité

Bruno Bachelet
Christophe Duhamel

Luc Touraille

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012

71

Historique

Concept apparu des les annees 70

Ce n'est pas un concept objet
0 Les principes objet ne sont pas nécessaires

... mais propose par les langages objets !
a0 ADA

o C++

o Java, C#

Généricité (1/2)

Définir des entités abstraites du type de donnees
o Structures de donnees: vecteur, pile, file, ensemble...
o Algorithmes: chercher, trier, insérer, extraire...

— Abstraction de données

Autre maniere de factoriser le code

o Dans une fonction, les parametres sont des valeurs
Dans sa définition, des valeurs sont inconnues
Au moment de l'appel, ces valeurs sont fixées

o Dans un génerique, les parametres sont des types
Dans sa définition, des types sont inconnus
Au moment d'utiliser le genérique, ces types sont fixés

Généricité (2/2)

Un génériqgue est un modele
o Instanciation = création d'un élément a partir d'un modele
o Instancier un générigue = fixer le type de ses parametres

Specificites en C++
o Geénériques appelées «templates»
o Des constantes peuvent aussi étre des parametres
o Peuvent étre générigues: fonctions, classes ou méthodes
o Possibilité de «spécialisation statique»
Une nouvelle forme de polymorphisme
Permet la spécialisation pour certains types de données

Exemples

Algorithme de tri

o Fonctionne de la méme maniere sur tout type de données
Entiers, flottants, chaines, instances d'une classe A...
o Suppose des fonctionnalités sur le type manipulé

Une relation d'ordre
0 Opérateur <

0 Une fonction ou un objet tiers (e.g. foncteur)

Un meécanisme de copie
0 Opérateur =

Type pile
o Fonctionne de la méme maniere sur tout type de données
0 Suppose un mecanisme de copie

Heéritage vs. généricité

La généricité est complémentaire de I'héritage

Tous les deux fournissent une forme de polymorphisme
o La généricité agit a la compilation
o L'néritage agit a I'exécution

Contribuent tous les deux a développer du code genérique
o Tous les deux font abstraction du type

o L'un par un processus de généralisation

o L'autre par un mécanisme de parametre

Avec I'heritage

o Plus de flexibilité, mais moins de sirete

o Contrbles de type effectués a I'exécution

o Peut entrainer des ralentissements significatifs

Avec la généricité

o Moins de flexibilité, mais plus de sareté

o Controles de type effectués a la compilation

o Moins de ralentissement (voire aucun) a I'exécution

Géneéricité en C++

Mot-clé «template »

Precede un composant genérigque
o Fonction, classe ou méthode

Définit des parametres
0 Soit des types: typename T
0 Soit des constantes: int N

Fonction générique

Définition d'une méethode géenérique
template <typename T>

const T & min(const T & a, const T & b)
{return (a<b?a:b);}

Suppose l'opérateur de comparaison sur le type paramétré «T»

Appel a une méthode générique (instanciation)
int ij;

Int kK = min<int>(i,));

Instanciation = fixer les types parametres

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 78

Polymorphisme statique

Pas obligatoire de preciser les types parametrés a l'instanciation

Si le compilateur a suffisamment d'informations, il deduit les types
o Comme avec la surcharge de nom

o Forme de polymorphisme statique
o int i,j; ... min(i,j); = instanciation de min<int>
o double a,b; ... min(a,b); = instanciation de min<double>

Le compilateur peut effectuer des conversions implicites
si les types ne correspondent pas tout a fait

Les «concepts» (1/2)

Algorithme de tri
template <typename T>
void AlgoTri<T>::trier(T t[],int n) {
for (int 1=0;1<n-1;i++)
for (int j=I1+1;)<n;j++)
it (t[]. (t[1]))
{Tx=1]; ti] =t]; th] = x; }
}

Hypothese: le type «T» possede la méthode «estAvant »
o Vérification faite a la compilation, au moment de l'instanciation

L'interface supposée de «T» est appelée un «concept»

Concept = ensemble de spécifications

o Concerne l'interface: existence d'une méthode

o Concerne I'implementation: complexité d'une méthode

o Mais aussi toute contrainte pertinente liee a l'utilisation du type

Les «concepts» (2/2)

Dans l'algo, «T» doit respecter le concept «Comparable »
o On dit: «T» modélise le concept «Comparable »

.Ti

r
|
|
I—

1
N «concept»

AlgoTri -r=- Comparable
«utilise»
______________>

+ trier(: THt + estAvANt(:T) : byoléen

Al ‘)(~)
Valide ! (;«“ais)n»/car cmodpise>

' Chaine

r==—=-71
1

1

I—

AIQW> S
+ valeur : string

+ set(:string)
+ trier(:Chainel[],int) * get/&) : Str(inTg) ool
+ estAvant(:T) : booleen

En C++, les concepts sont pour l'instant implicites
o Seule une documentation permet de les identifier
o Voir la documentation de la STL par exemple

o En Java: les types contraints + interface

Classe générique

= Définition d'une classe generique
template <typename T,int N> class Pile {
private:
T elements[N];
Int sommet;
public:
Pile(void);
void ajouter(const T &);
T retirer(void);

¥

= Instanciation d'une classe generique
o Pile<int, 256> p;
o typedef Pile<double,100> pile double t;

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012

82

Parameétres par défaut (7/2)

= Possibilité d'une valeur par défaut pour un parametre

= Constante par defaut
o template <typename T,int N = 256> class Pile;

a Pile<int> — instanciation de Pile<int,256>

= Type par défaut

o template <typename T,typename C =int>
class TableHachage;

o TableHachage<string>
= instanciation de TableHachage<string,int>

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 83

Parameétres par défaut (2/2)

Exemple plus subtil
o Parameétrage du type de structure utilisé pour modéliser une pile

Définition de la classe
template <typename T,typename C> class Pile {

protected: C elements;

};...

Instanciation: Pile<int,vector<int> >

Proposons une structure par défaut

o template <typename T,typename C = vector<T> >
class Pile;

o Pile<int> — instanciation de Pile<int,vector<int> >

Remarque de syntaxe
o Il arrive d'avoir << ou >> dans la définition d'un template

o Mettre un espace pour éviter la confusion avec l'opérateur de flux

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 84

Méthodes génériques

= Exemple de declaration
template <typename T> class Pile {

template <typename U> void copier(const Pile<U> &);
5
= Utilisation
Pile<double> p1;
Pile<int> p2;

pl.copier(p2);

= Instanciation explicite: pl.copier<int>(p2);

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 85

Implémentation d'un template (7/2)

Normalement, séparation interface et implémentation

o Fichier entéte
Déclaration méthodes + attributs

o Fichier implémentation
Définition méethodes + attributs statiques

Pour la suite, méthode «template»
= méthode générigue ou méthode d'une classe générique

Implémentation des méthodes «template» dans un entéte

o Utilisation des méthodes «inline» similaire aux méthodes «template»
o Ce sont des modeles de méthodes

o Leur implémentation doit étre visible au moment de l'appel

Conseil de lisibilité: placer les implémentation en dehors de la classe

Implémentation d'un template (2/2)

template <typename T,int N> class Pile {
private:
T elements[N];
Int sommet;
public:
Pile(void);
void ajouter(const T &);
T retirer(void);

%

template <typename T,int N> Pile<T,N>::Pile(void)
: sommet(0) {}

template <typename T,int N> Pile<T,N>::ajouter(const T & e)
{ elements[sommet++]=¢e; }

template <typename T,int N> T Pile<T,N>::retirer(void)
{ return elements[--sommet]; }

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 87

Mot-clé «typename»

= Indigue que ce qui suit est un type

= Utilisé dans la déeclaration d'un parametre
o template <typename T>

o template <class T> = obsolete, a éviter

= Utilisé pour lever une ambiguité
o A cause de l'instanciation partielle
o Tant que l'instanciation n'est pas effective = doute

o Exemple:

= template <typename T> class A {
public: typedef T type t;

I3
= template <typename T> class B {
typedef typename A<T>:type_ t type A;
I3

o On ne sait ce gu'est A<T>::type t
= Type ou attribut ? = typename

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 88

Compilation d'un générique (1/2)

Un code générigue n'est pas compilé
o Analyse «succincte» au niveau syntaxique

Un code instancié est compilé
o Analyse «compléte» au niveau sémantique

Instanciation = réécriture
o Code générique duplique
o Types parametres remplacés par types concrets

Equivalent d'un copier-coller-remplacer
o Permet une efficacité optimale du code

Compilation d'un générique (2/2)

Attention: une instance par jeu de parametres

o Travail du compilateur important = temps de compilation
o Duplication de code = tallle de I'exécutable

Attention: aucun lien entre 2 instances (en C++)

o Pas de parenté entre les instances d'une classe generique

o Pas de passerelle de conversion
Pile<int> p1;
Pile<double> p2;
pl =p2; = Interdit

o Méme sur les parametres constants
Pile<int,10> p1,;
Pile<int,20> p2;
pl=p2;, = interdit

Relation d'amitié (71/2)

Amitié = rompre I'encapsulation avec un composant bien identifié

A eviter, mais parfois nécessaire

o Entre composants d'un méme module

o Evite des méthodes publigues inutiles hors module

o En C++, pas de modificateur «friendly» comme en Java

Mot-clé «friend »

o class A {
friend class B;
friend void f(void);
friend void C::g(void);

o La classe B voit les membres cachés de A

o La fonction f voit les membres cachés de A
o La méthode g de la classe C voit les membres cachés de A

Relation d'amitié (2/2)

= L'amitié n'est pas réciproque (ni transitive)
o class B{
friend class A,

=

= Une fonction peut étre amie

o classB{
friend void f(void);

=

= L'amitié n'est pas une déclaration
o fou A ne peuvent pas étre utilisées par B sans déclaration préalable

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 92

Déclaration anticipée (1/3)

Pour utiliser une classe ou une fonction, celle-ci doit étre connue
o Elle doit étre déclarée

o Pour une fonction = prototype

o Pour une classe = déclaration complete ou «anticipee»

Amitié réciproque = déclaration anticipee
o Car une classe doit forcement étre déclarée avant l'autre

En anglais: «forward declaration»

Exemple de déclaration anticipée
a class B;

class A {
friend class B;

b

o class A:

class B {
friend class A;

b

Déclaration anticipée (2/3)

Déclaration anticipée = deéclaration partielle d'un type
o Seul le nom est indiqué
o Rien n'est precisé sur la structure du type

— Restrictions tant qu'il n'est pas completement declaré

Aucune methode ou attribut ne peut étre appelée
o Aa; = interdit

o0 Alx; = Interdit

o A:m(); = Interdit

Le type peut étre utilisé sans restriction dans les déclarations
o void m(A *); = ok

o voidm(A &); =o0k

o void m(A); =ok

Déclaration anticipée (3/3)

= Seuls les pointeurs et réferences

peuvent étre utilisés dans les définitions
o Variables

m A*a

0] '¢

= A&a; = 0k
= a->m(); = interdit
o Arguments

= Void
= Void
= Void

= Utilisation
o typedef

m(A*) {...} = ok
mA & {..} =ok
m(A) {...} = interdit

normale avec «typedef » et «friend »
A mon_ami;

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 95

Amitié et généricité (1/2)

= Exemples
o template <typename T> class B;

o template <typename T>void f(void);

= Amitié avec toutes les instances

o class A{
template <typename T> friend class B;

J§

o class A{
template <typename T> friend void f(void);

J§

= Amitié avec une instance particuliere

o class A{
friend class B<int>;

J§

o class A{
friend void f<int>(void);

J§

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 96

Amitié et généricité (2/2)

Cas d’'une classe genérigue: exemple d'amitié avec une instance
template <typename T> class Vecteur;

template <typename T>
ostream & operator << (ostream &,const Vecteur<T> &);

template <typename T> class Vecteur {
friend
ostream & operator << <T> (ostream &,const Vecteur<T> &);

protected: T * elements;
protected: int nb;

};...

template <typename T>

ostream & operator << (ostream & f,const Vecteur<T> & v) {
for (int i=0; i<v.nb; ++i) f << v.elements[i] <<" " ;
return f;

}

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 97

Héritage et généricité (1/4)

= Heritage «simple»
o Héritage d'une instance d'une classe générique
o Exemple: NuagePoint hérite de Vecteur<Point>

= [llustration
a template <typename T> class A {...};

o class B : public A<int> {...};

A dasem - pcine B

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 98

Héritage et généricité (2/4)

= Héritage «classique»
o Héritage entre deux classes génériques
o Exemple: FileAttente<T> hérite de Vecteur<T>

= [llustration
a template <typename T> class A {...};

o template <typename T>
class B : public A<T>{...};

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 99

Heéritage et généricité (3/4)

= Héritage avec «extension»

o Héritage entre classes générigues avec ajout d'un parametre
o Exemple: FilePriorite<T,C> hérite de Vecteur<T>
= «C» = objet comparateur qui indigue la relation d'ordre

= [llustration
a template <typename T> class A {...};

o template <typename T,typename U>
class B : public A<T>{...};

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 100

Héritage et généricité (4/4)

= Héritage «générique»
o Héritage d'une classe qui est un parametre
= Extension potentielle de toutes les classes
o Exemple: Comparable<T> heéritede T
= Toute classe peut devenir un «comparable»

= lllustration
o template <typename T>class B : public T {...};

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 101

Spécialisation statique

Composant generigue = modele indépendant des types

Mais cela peut étre pénalisant
o Exemple: recherche d'un élément dans une structure
o Approches différentes suivant que la structure soit triée ou non

— Mécanisme de spécialisation «statique»
o Spécialisation du modele générigue pour un jeu de parametres

o Jeu de parametres partiel ou complet
On parle aussi d'«instanciation» partielle ou complete

Associé au polymorphisme statigue de l'instanciation
o «Meilleure» instanciation choisie en fonction du jeu de parametres

Spécialisation d'une fonction générique

Modele générique d'une fonction de calcul de moyenne
template <int N> double moyenne(int * tab) {

double somme = 0;

for (int 1=0; 1< N; ++i) somme += tab[i];

return (somme/N);

}

Spécialisation du modele pour N=2etN=1
template <> double moyenne<2>(int * tab)
{ return (double(tab[0] + tab[1])/2); }

template <> double moyenne<1>(int * tab)
{ return double(tab[0]); }

Attention a l'ordre
o Deéclarer d'abord la version géenérique, puis les versions specifiques

En C++, spécialisation «partielle» d'une fonction (ou méthode) interdite

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 103

Spécialisation d'une classe générique

= Modele générique d'un vecteur d'élements
template <typename T> class Vecteur {

protected: T * elements;
protected: int taille;

public: T operator [] (int 1)
{ return elementg]i]; }

J

= Spécialisation du modele pour T = bool
template <> class Vecteur<bool> {

protected: char * elements;
protected: int taille;

|.c;.ublic: bool operator [] (int 1)
{ return ((elements]i/8] >> (1%8)) & 1); }

I3

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 104

Polymorphisme statique

Mecanisme statique lors de l'instanciation d'un modele
o Selection de la version la plus spécialisée
o En fonction du jeu de parametres

— Génération du code le plus dédié possible

Exemples d'instanciations

o moyenne<l10>(tab); = version générique

0 moyenne<2>(tab); = version spécialisée pour N = 2

a Vecteur<int> v; = version générique

o Vecteur<bool> v; —> version spécialisée pour T = bool

Spécialisation partielle (1/2)

Spécialisation partielle
= spécialisation avec un jeu de parametres incomplet

Retour sur I'exemple de calcul de moyenne
template <typename T,int N> class Moyenne {

public: static T calculer(T * tab) {
T somme = T();
for (int 1=0; 1< N; ++i) somme += tabli];
return (somme/T(N));
}
I3

Spécialisation pour N = 2 (T reste inconnu)
template <typename T> class Moyenne<T,2> {

public: static T calculer(T * tab)
{ return ((tab[0] + tab[1])/T(2)); }
J§

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012

106

Spécialisation partielle (2/2)

= Exemple de recherche d'un élément dans un conteneur
template <typename T,typename C>
class Recherche {
public:
static bool executer(const C & conteneur,
const T & element);

%

= Spécialisation pour C = vector<T> (T reste inconnu)
template <typename T>

class Recherche< T,vector<T> > {
public:
static bool executer(const vector<T> & conteneur,
const T & element);

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 107

Alternative a 1'héritage (1/2)

= Polymorphisme dynamigue = colt important a I'exécution

= Exemple: stratégie de recherche dans un conteneur
template <typename T> class Vecteur {

public: virtual bool rechercher(const T & X);

¥

template <typename T> class VecteurTrie
. public Vecteur<T> {

public: bool rechercher(const T & Xx);

¥

= Heritage des conteneurs vraiment nécessaire ?
o Aspect dynamique sans intérét = spécialisation statique

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 108

Alternative a 1'héritage (2/2)

Version générique avec spécialisation statique
template <typename T,typename C> class Recherche {

public: static bool executer(const C & c,
const T &e);

J

template <typename T>
class Recherche< T,VecteurTrie<T> > {
public:
static bool executer(const VecteurTrie<T> & c,
const T &e);

J

Astuce: utiliser la déduction automatique des parametres
template <typename T,typename C>

Int rechercher(const C & c,const T & e)
{ return Recherche<T,C>::executer(c,e); }

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012

109

Retour sur 1'héritage avec généricité

= Exemple

o template <typename T> class A {
public: void m(void);

};...
a template <typename T> class B : public A<T> {
public: void n(void) {... m(); ... }

¢
= Instantiation partielle = doute

= Toujours utiliser this -> sur un membre héerité
o Si une fonction «m» existe, elle peut étre appelée
a Donc: void n(void) { ... this->m(); ...;}

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 110

Parametre «template template»

Possibilité d'avoir une classe générigue comme parametre d'un géenérique
o Mot-clé «template » utilisé dans les parametres du genérique

Exemple

o template <typename T,template <typename> class C>
class Pile {

bfotected: C<T> elements:
¢

o Utilisation: Pile<int,std::vector>

Attention: «C» n'est pas un type mais bien un modele !
o «C» est une classe genéerigue
0 C'est «C<T>» le type du conteneur

Pile<int,std::vector<int> > est incorrect !
o Fonctionne avec: template <typename T,typename C> class Plile;

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 111

