
Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 71

PPARTIEARTIE IIIIII

GGéénnééricitricitéé

Bruno BacheletBruno Bachelet

Christophe DuhamelChristophe Duhamel

Luc TourailleLuc Touraille

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 72

HistoriqueHistorique

� Concept apparu dès les années 70

� Ce n'est pas un concept objet
� Les principes objet ne sont pas nécessaires

� … mais proposé par les langages objets !
� ADA
� C++
� Java, C#

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 73

GGéénnééricitricitéé (1/2)(1/2)

� Définir des entités abstraites du type de données
� Structures de données: vecteur, pile, file, ensemble…
� Algorithmes: chercher, trier, insérer, extraire…

⇒ Abstraction de données

� Autre manière de factoriser le code
� Dans une fonction, les paramètres sont des valeurs

� Dans sa définition, des valeurs sont inconnues

� Au moment de l'appel, ces valeurs sont fixées

� Dans un générique, les paramètres sont des types
� Dans sa définition, des types sont inconnus

� Au moment d'utiliser le générique, ces types sont fixés

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 74

GGéénnééricitricitéé (2/2)(2/2)

� Un générique est un modèle
� Instanciation = création d'un élément à partir d'un modèle
� Instancier un générique ⇒ fixer le type de ses paramètres

� Spécificités en C++
� Génériques appelés «templates»
� Des constantes peuvent aussi être des paramètres
� Peuvent être génériques: fonctions, classes ou méthodes
� Possibilité de «spécialisation statique»

� Une nouvelle forme de polymorphisme
� Permet la spécialisation pour certains types de données

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 75

ExemplesExemples

� Algorithme de tri
� Fonctionne de la même manière sur tout type de données

� Entiers, flottants, chaînes, instances d'une classe A…

� Suppose des fonctionnalités sur le type manipulé
� Une relation d'ordre

� Opérateur <

� Une fonction ou un objet tiers (e.g. foncteur)

� Un mécanisme de copie
� Opérateur =

� Type pile
� Fonctionne de la même manière sur tout type de données
� Suppose un mécanisme de copie

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 76

HHééritage ritage vs.vs. ggéénnééricitricitéé

� La généricité est complémentaire de l'héritage

� Tous les deux fournissent une forme de polymorphisme
� La généricité agit à la compilation
� L'héritage agit à l'exécution

� Contribuent tous les deux à développer du code générique
� Tous les deux font abstraction du type
� L'un par un processus de généralisation
� L'autre par un mécanisme de paramètre

� Avec l'héritage
� Plus de flexibilité, mais moins de sûreté
� Contrôles de type effectués à l'exécution
� Peut entraîner des ralentissements significatifs

� Avec la généricité
� Moins de flexibilité, mais plus de sûreté
� Contrôles de type effectués à la compilation
� Moins de ralentissement (voire aucun) à l'exécution

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 77

GGéénnééricitricitéé en C++en C++

� Mot-clé «template »

� Précède un composant générique
� Fonction, classe ou méthode

� Définit des paramètres
� Soit des types: typename T

� Soit des constantes: int N

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 78

Fonction gFonction géénnéériquerique

� Définition d'une méthode générique
template <typename T>

const T & min(const T & a, const T & b)

{ return (a<b ? a : b); }

� Suppose l'opérateur de comparaison sur le type paramétré «T»

� Appel à une méthode générique (instanciation)
int i,j;

…

int k = min<int>(i,j);

� Instanciation ⇒ fixer les types paramétrés

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 79

Polymorphisme statiquePolymorphisme statique

� Pas obligatoire de préciser les types paramétrés à l'instanciation

� Si le compilateur a suffisamment d'informations, il déduit les types
� Comme avec la surcharge de nom
� Forme de polymorphisme statique
� int i,j; … min(i,j); ⇒ instanciation de min<int>

� double a,b; … min(a,b); ⇒ instanciation de min<double>

� Le compilateur peut effectuer des conversions implicites
si les types ne correspondent pas tout à fait

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 80

Les Les ««conceptsconcepts»» (1/2)(1/2)
� Algorithme de tri

template <typename T>

void AlgoTri<T>::trier(T t[],int n) {

for (int i = 0; i < n-1; i++)

for (int j = i+1; j < n; j++)

if (t[j]. estAvant (t[i]))

{ T x = t[i]; t[i] = t[j]; t[j] = x; }

}

� Hypothèse: le type «T» possède la méthode «estAvant »
� Vérification faite à la compilation, au moment de l'instanciation

� L'interface supposée de «T» est appelée un «concept»

� Concept = ensemble de spécifications
� Concerne l'interface: existence d'une méthode
� Concerne l'implémentation: complexité d'une méthode
� Mais aussi toute contrainte pertinente liée à l'utilisation du type

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 81

Les Les ««conceptsconcepts»» (2/2)(2/2)
� Dans l'algo, «T» doit respecter le concept «Comparable »

� On dit: «T» modélise le concept «Comparable »

� En C++, les concepts sont pour l'instant implicites
� Seule une documentation permet de les identifier
� Voir la documentation de la STL par exemple
� En Java: les types contraints + interface

+ estAvant(:T) : booléen

«concept»
ComparableAlgoTri

+ trier(:T[],:int)
…

…

T

Chaine

+ set(:string)
+ get() : string
+ estAvant(:T) : booléen

+ valeur : string

«modélise»

«utilise»

AlgoTri<Chaine>

+ trier(:Chaine[],:int)
…

…

«liaison»Valide ! car

T

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 82

Classe gClasse géénnéériquerique

� Définition d'une classe générique
template <typename T,int N> class Pile {

private:

T elements[N];

int sommet;

public:

Pile(void);

void ajouter(const T &);

T retirer(void);

};

� Instanciation d'une classe générique
� Pile<int,256> p;

� typedef Pile<double,100> pile_double_t;

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 83

ParamParamèètres par dtres par dééfaut faut (1/2)(1/2)

� Possibilité d'une valeur par défaut pour un paramètre

� Constante par défaut
� template <typename T,int N = 256> class Pile;

� Pile<int> ⇒ instanciation de Pile<int,256>

� Type par défaut
� template <typename T,typename C = int>

class TableHachage;

� TableHachage<string>
⇒ instanciation de TableHachage<string,int>

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 84

ParamParamèètres par dtres par dééfaut faut (2/2)(2/2)

� Exemple plus subtil
� Paramétrage du type de structure utilisé pour modéliser une pile

� Définition de la classe
template <typename T,typename C> class Pile {

…
protected: C elements;
…

};

� Instanciation: Pile<int,vector<int> >

� Proposons une structure par défaut
� template <typename T,typename C = vector<T> >

class Pile;
� Pile<int> ⇒ instanciation de Pile<int,vector<int> >

� Remarque de syntaxe
� Il arrive d'avoir << ou >> dans la définition d'un template
� Mettre un espace pour éviter la confusion avec l'opérateur de flux

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 85

MMééthodes gthodes géénnéériquesriques

� Exemple de déclaration
template <typename T> class Pile {

…

template <typename U> void copier(const Pile<U> &);

…

};

� Utilisation
Pile<double> p1;

Pile<int> p2;

…

p1.copier(p2);

� Instanciation explicite: p1.copier<int>(p2);

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 86

ImplImpléémentation d'un mentation d'un templatetemplate (1/2)(1/2)

� Normalement, séparation interface et implémentation
� Fichier entête

� Déclaration méthodes + attributs
� Fichier implémentation

� Définition méthodes + attributs statiques

� Pour la suite, méthode «template»
= méthode générique ou méthode d'une classe générique

� Implémentation des méthodes «template» dans un entête
� Utilisation des méthodes «inline» similaire aux méthodes «template»
� Ce sont des modèles de méthodes
� Leur implémentation doit être visible au moment de l'appel

� Conseil de lisibilité: placer les implémentation en dehors de la classe

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 87

ImplImpléémentation d'un mentation d'un templatetemplate (2/2)(2/2)

template <typename T,int N> class Pile {
private:

T elements[N];
int sommet;

public:
Pile(void);
void ajouter(const T &);
T retirer(void);

};

template <typename T,int N> Pile<T,N>::Pile(void)
: sommet(0) {}

template <typename T,int N> Pile<T,N>::ajouter(const T & e)
{ elements[sommet++]=e; }

template <typename T,int N> T Pile<T,N>::retirer(void)
{ return elements[--sommet]; }

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 88

MotMot--clcléé ««typenametypename»»
� Indique que ce qui suit est un type

� Utilisé dans la déclaration d'un paramètre
� template <typename T>

� template <class T> ⇒ obsolète, à éviter

� Utilisé pour lever une ambiguïté
� A cause de l'instanciation partielle
� Tant que l'instanciation n'est pas effective ⇒ doute
� Exemple:

� template <typename T> class A {
public: typedef T type_t;

};

� template <typename T> class B {
typedef typename A<T>::type_t type_A;

};

� On ne sait ce qu'est A<T>::type_t
� Type ou attribut ? ⇒ typename

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 89

Compilation d'un gCompilation d'un géénnéérique rique (1/2)(1/2)

� Un code générique n'est pas compilé
� Analyse «succincte» au niveau syntaxique

� Un code instancié est compilé
� Analyse «complète» au niveau sémantique

� Instanciation = réécriture
� Code générique dupliqué
� Types paramètres remplacés par types concrets

� Equivalent d'un copier-coller-remplacer
� Permet une efficacité optimale du code

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 90

Compilation d'un gCompilation d'un géénnéérique rique (2/2)(2/2)

� Attention: une instance par jeu de paramètres
� Travail du compilateur important ⇒ temps de compilation
� Duplication de code ⇒ taille de l'exécutable

� Attention: aucun lien entre 2 instances (en C++)
� Pas de parenté entre les instances d'une classe générique
� Pas de passerelle de conversion

� Pile<int> p1;

� Pile<double> p2;

� p1 = p2; ⇒ interdit

� Même sur les paramètres constants
� Pile<int,10> p1;

� Pile<int,20> p2;

� p1 = p2; ⇒ interdit

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 91

Relation d'amitiRelation d'amitiéé (1/2)(1/2)

� Amitié = rompre l'encapsulation avec un composant bien identifié

� A éviter, mais parfois nécessaire
� Entre composants d'un même module
� Evite des méthodes publiques inutiles hors module
� En C++, pas de modificateur «friendly» comme en Java

� Mot-clé «friend »
� class A {

friend class B;
friend void f(void);
friend void C::g(void);
...

};
� La classe B voit les membres cachés de A
� La fonction f voit les membres cachés de A
� La méthode g de la classe C voit les membres cachés de A

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 92

Relation d'amitiRelation d'amitiéé (2/2)(2/2)

� L'amitié n'est pas réciproque (ni transitive)
� class B {

friend class A;
…

};

� Une fonction peut être amie
� class B {

friend void f(void);
…

};

� L'amitié n'est pas une déclaration
� f ou A ne peuvent pas être utilisées par B sans déclaration préalable

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 93

DDééclaration anticipclaration anticipéée e (1/3)(1/3)
� Pour utiliser une classe ou une fonction, celle-ci doit être connue

� Elle doit être déclarée
� Pour une fonction ⇒ prototype
� Pour une classe ⇒ déclaration complète ou «anticipée»

� Amitié réciproque ⇒ déclaration anticipée
� Car une classe doit forcément être déclarée avant l'autre

� En anglais: «forward declaration»

� Exemple de déclaration anticipée
� class B;

…
class A {

friend class B;
…

};
� class A;

…
class B {

friend class A;
…

};

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 94

DDééclaration anticipclaration anticipéée e (2/3)(2/3)

� Déclaration anticipée = déclaration partielle d'un type
� Seul le nom est indiqué
� Rien n'est précisé sur la structure du type

⇒ Restrictions tant qu'il n'est pas complètement déclaré

� Aucune méthode ou attribut ne peut être appelé
� A a; ⇒ interdit
� A::x; ⇒ interdit
� A::m(); ⇒ interdit

� Le type peut être utilisé sans restriction dans les déclarations
� void m(A *); ⇒ ok
� void m(A &); ⇒ ok
� void m(A); ⇒ ok

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 95

DDééclaration anticipclaration anticipéée e (3/3)(3/3)

� Seuls les pointeurs et références
peuvent être utilisés dans les définitions
� Variables

� A * a; ⇒ ok
� A & a; ⇒ ok
� a->m(); ⇒ interdit

� Arguments
� void m(A *) {…} ⇒ ok
� void m(A &) {…} ⇒ ok
� void m(A) {…} ⇒ interdit

� Utilisation normale avec «typedef » et «friend »
� typedef A mon_ami;

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 96

AmitiAmitiéé et get géénnééricitricitéé (1/2)(1/2)

� Exemples
� template <typename T> class B;
� template <typename T> void f(void);

� Amitié avec toutes les instances
� class A {

template <typename T> friend class B;
};

� class A {
template <typename T> friend void f(void);

};

� Amitié avec une instance particulière
� class A {

friend class B<int>;
};

� class A {
friend void f<int>(void);

};

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 97

AmitiAmitiéé et get géénnééricitricitéé (2/2)(2/2)

� Cas d’une classe générique: exemple d'amitié avec une instance
template <typename T> class Vecteur;

template <typename T>
ostream & operator << (ostream &,const Vecteur<T> &);

template <typename T> class Vecteur {
friend
ostream & operator << <T> (ostream &,const Vecteur<T> &);

protected: T * elements;
protected: int nb;
…

};

template <typename T>
ostream & operator << (ostream & f,const Vecteur<T> & v) {

for (int i=0; i<v.nb; ++i) f << v.elements[i] << " " ;
return f;

}

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 98

HHééritage et gritage et géénnééricitricitéé (1/4)(1/4)

� Héritage «simple»
� Héritage d'une instance d'une classe générique
� Exemple: NuagePoint hérite de Vecteur<Point>

� Illustration
� template <typename T> class A {…};

� class B : public A<int> {…};

A
T

«liaison»
A<int> B

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 99

HHééritage et gritage et géénnééricitricitéé (2/4)(2/4)

� Héritage «classique»
� Héritage entre deux classes génériques
� Exemple: FileAttente<T> hérite de Vecteur<T>

� Illustration
� template <typename T> class A {…};

� template <typename T>
class B : public A<T> {…};

A
T

B
T

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 100

HHééritage et gritage et géénnééricitricitéé (3/4)(3/4)

� Héritage avec «extension»
� Héritage entre classes génériques avec ajout d'un paramètre
� Exemple: FilePriorite<T,C> hérite de Vecteur<T>

� «C» = objet comparateur qui indique la relation d'ordre

� Illustration
� template <typename T> class A {…};

� template <typename T,typename U>
class B : public A<T> {…};

A
T

B
T,U

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 101

HHééritage et gritage et géénnééricitricitéé (4/4)(4/4)

� Héritage «générique»
� Héritage d'une classe qui est un paramètre

� Extension potentielle de toutes les classes

� Exemple: Comparable<T> hérite de T
� Toute classe peut devenir un «comparable»

� Illustration
� template <typename T> class B : public T {…};

T B
T

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 102

SpSpéécialisation statiquecialisation statique

� Composant générique = modèle indépendant des types

� Mais cela peut être pénalisant
� Exemple: recherche d'un élément dans une structure
� Approches différentes suivant que la structure soit triée ou non

⇒ Mécanisme de spécialisation «statique»
� Spécialisation du modèle générique pour un jeu de paramètres
� Jeu de paramètres partiel ou complet

� On parle aussi d'«instanciation» partielle ou complète

� Associé au polymorphisme statique de l'instanciation
� «Meilleure» instanciation choisie en fonction du jeu de paramètres

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 103

SpSpéécialisation d'une fonction gcialisation d'une fonction géénnéériquerique

� Modèle générique d'une fonction de calcul de moyenne
template <int N> double moyenne(int * tab) {

double somme = 0;
for (int i = 0; i < N; ++i) somme += tab[i];
return (somme/N);

}

� Spécialisation du modèle pour N = 2 et N = 1
template <> double moyenne<2>(int * tab)
{ return (double(tab[0] + tab[1])/2); }

template <> double moyenne<1>(int * tab)
{ return double(tab[0]); }

� Attention à l'ordre
� Déclarer d'abord la version générique, puis les versions spécifiques

� En C++, spécialisation «partielle» d'une fonction (ou méthode) interdite

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 104

SpSpéécialisation d'une classe gcialisation d'une classe géénnéériquerique

� Modèle générique d'un vecteur d'éléments
template <typename T> class Vecteur {

protected: T * elements;

protected: int taille;

...

public: T operator [] (int i)

{ return elements[i]; }

};

� Spécialisation du modèle pour T = bool
template <> class Vecteur<bool> {

protected: char * elements;

protected: int taille;

...

public: bool operator [] (int i)

{ return ((elements[i/8] >> (i%8)) & 1); }

};

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 105

Polymorphisme statiquePolymorphisme statique

� Mécanisme statique lors de l'instanciation d'un modèle
� Sélection de la version la plus spécialisée
� En fonction du jeu de paramètres

⇒ Génération du code le plus dédié possible

� Exemples d'instanciations
� moyenne<10>(tab); ⇒ version générique
� moyenne<2>(tab); ⇒ version spécialisée pour N = 2
� Vecteur<int> v; ⇒ version générique
� Vecteur<bool> v; ⇒ version spécialisée pour T = bool

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 106

SpSpéécialisation partielle cialisation partielle (1/2)(1/2)

� Spécialisation partielle
= spécialisation avec un jeu de paramètres incomplet

� Retour sur l'exemple de calcul de moyenne
template <typename T,int N> class Moyenne {

public: static T calculer(T * tab) {

T somme = T();

for (int i = 0; i < N; ++i) somme += tab[i];

return (somme/T(N));

}

};

� Spécialisation pour N = 2 (T reste inconnu)
template <typename T> class Moyenne<T,2> {

public: static T calculer(T * tab)

{ return ((tab[0] + tab[1])/T(2)); }

};

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 107

SpSpéécialisation partielle cialisation partielle (2/2)(2/2)

� Exemple de recherche d'un élément dans un conteneur
template <typename T,typename C>
class Recherche {

public:
static bool executer(const C & conteneur,

const T & element);
};

� Spécialisation pour C = vector<T> (T reste inconnu)
template <typename T>
class Recherche< T,vector<T> > {

public:
static bool executer(const vector<T> & conteneur,

const T & element);
};

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 108

Alternative Alternative àà l'hl'hééritage ritage (1/2)(1/2)

� Polymorphisme dynamique ⇒ coût important à l'exécution

� Exemple: stratégie de recherche dans un conteneur
template <typename T> class Vecteur {

...

public: virtual bool rechercher(const T & x);

};

template <typename T> class VecteurTrie

: public Vecteur<T> {

...

public: bool rechercher(const T & x);

};

� Héritage des conteneurs vraiment nécessaire ?
� Aspect dynamique sans intérêt ⇒ spécialisation statique

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 109

Alternative Alternative àà l'hl'hééritage ritage (2/2)(2/2)

� Version générique avec spécialisation statique
template <typename T,typename C> class Recherche {

public: static bool executer(const C & c,

const T & e);

};

template <typename T>

class Recherche< T,VecteurTrie<T> > {

public:

static bool executer(const VecteurTrie<T> & c,

const T & e);

};

� Astuce: utiliser la déduction automatique des paramètres
template <typename T,typename C>

int rechercher(const C & c,const T & e)

{ return Recherche<T,C>::executer(c,e); }

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 110

Retour sur l'hRetour sur l'hééritage avec gritage avec géénnééricitricitéé

� Exemple
� template <typename T> class A {

public: void m(void);
…

};

� template <typename T> class B : public A<T> {
public: void n(void) { … m(); … }
…

};

� Instantiation partielle ⇒ doute

� Toujours utiliser this -> sur un membre hérité
� Si une fonction «m» existe, elle peut être appelée
� Donc: void n(void) { … this->m(); …; }

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 111

ParamParamèètre tre ««templatetemplate templatetemplate»»

� Possibilité d'avoir une classe générique comme paramètre d'un générique
� Mot-clé «template » utilisé dans les paramètres du générique

� Exemple
� template <typename T,template <typename> class C>

class Pile {
…
protected: C<T> elements;
…

};

� Utilisation: Pile<int,std::vector>

� Attention: «C» n'est pas un type mais bien un modèle !
� «C» est une classe générique
� C'est «C<T>» le type du conteneur

� Pile<int,std::vector<int> > est incorrect !
� Fonctionne avec: template <typename T,typename C> class Pile;

