
Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 112

PPARTIEARTIE IVIV

MMéétaprogrammationtaprogrammation

par les gpar les géénnéériquesriques

Bruno BacheletBruno Bachelet

Luc TourailleLuc Touraille

Christophe DuhamelChristophe Duhamel

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 113

MMéétaprogrammationtaprogrammation par les gpar les géénnéériques riques (1/2)(1/2)

� Repose sur plusieurs mécanismes

� Généricité / patrons de composants
� En C++: les templates

� Instanciation des patrons sans surcoût
� Au plus proche d'un code dédié

� En C++: chaque instanciation d'un générique ⇒ code dédié
� En Java: mécanisme de «type erasure» ⇒ pas de code dédié

� Spécialisation «statique»
� Possibilité de spécialisation d'un composant générique
� Basée sur le type (ou la valeur statique) des paramètres génériques

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 114

MMéétaprogrammationtaprogrammation par les gpar les géénnéériques riques (2/2)(2/2)

� Objectifs
� Composants génériques (au sens large)
� Sans ou avec peu de baisse de performance

� Le génie logiciel nous apprend que généralement
� La généricité (au sens large) a un coût
� Recherche d'un compromis entre généricité et efficacité

� Mais avec la programmation générique
� Beaucoup de travail à la compilation ⇒ peu de pertes

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 115

Quelques utilisations possiblesQuelques utilisations possibles

� Evaluation partielle
� Optimisation de calculs
� Effectuer une partie d'un calcul à la compilation

� Classes de traits ou politiques
� Fournir des informations sur les types
� Ajout non invasif de propriétés ou fonctionnalités

� Métafonctions
� Fonctions statiques qui produisent du code dynamique
� Ecrire des algorithmes statiques

� Structures de types
� Stockage de types (au lieu de données)
� Manipuler des ensembles de types

� Patrons d'expressions
� Représentation d'une expression sous forme d'objets
� Définition d'un langage spécifique embarqué dans C++

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 116

Evaluation partielle Evaluation partielle (1/6)(1/6)

� Calcul = partie statique + partie dynamique

� C++ = langage à 2 niveaux
� Code dynamique: compilé puis exécuté
� Code statique: interprété à la compilation

� Basé sur les templates + des mécanismes statiques
� Turing-complet ⇒ pas de limite théorique au niveau algorithmique

� Programmation générique ⇒ évaluation statique d'un calcul
� L'évaluation statique est généralement partielle
� On cherchera à effectuer le maximum de calcul statiquement

� Efficacité accrue à l'exécution
� Peut être très supérieure à l'évaluation dynamique

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 117

Evaluation partielle Evaluation partielle (2/6)(2/6)

� Exemple: factorielle n!

� Version dynamique
long factorielle(int n) {

long r = 1;

for (int i = 2; i <= n; i++) r *= i;

return r;

}

� Tout se passe à l'exécution
� y = factorielle(5);

� Paramètre statique ⇒ possibilité de calcul à la compilation

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 118

Evaluation partielle Evaluation partielle (3/6)(3/6)

� Version statique, avec fonction générique
template <int N> inline long factorielle(void)

{ return (N * factorielle<N-1>()); }

template <> inline long factorielle<0>(void)

{ return 1; }

� Développement du calcul à la compilation
� y = factorielle<5>(); ⇒ y = 120;

� Défauts de cette solution
� Instanciation partielle interdite
� L'inlining peut être refusé

� Exemple: code de la fonction trop long

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 119

Evaluation partielle Evaluation partielle (4/6)(4/6)

� Version statique, avec classe générique
template <int N> class Factorielle {
public: static const long valeur

= N * Factorielle<N-1>::valeur;
};

template <> class Factorielle<0> {
public: static const long valeur = 1;

};

� Développement du calcul à la compilation
� y = Factorielle<5>::valeur ⇒ y = 120;

� Avantages de cette solution
� Instanciation partielle possible
� Pas de problème d'inlining

� Conseil: privilégier l'utilisation d'une structure
� Membres et héritage publics par défaut ⇒ syntaxe allégée

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 120

Evaluation partielle Evaluation partielle (5/6)(5/6)

� Exemple d'évaluation partielle: puissance xn

� Version dynamique
double puissance(double x,int n) {

double r = 1;

for (int i = 1; i <= n; ++i) r *= x;

return r;

}

� n est souvent une valeur statique
⇒ évaluation statique d'une partie du calcul

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 121

Evaluation partielle Evaluation partielle (6/6)(6/6)

� Version partiellement statique
template <int N> struct Puissance {

static double calculer(double x)

{ return (Puissance<N-1>::calculer(x) * x); }

};

template <> struct Puissance<0> {

static double calculer(double) { return 1.0; }

};

� Une partie du développement du calcul à la compilation
� y = Puissance<5>::calculer(1.2);

⇒ y = puissance_5(1.2);

� double puissance_5(double x)
{ return x*x*x*x*x; }

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 122

Classes de traits ou politiques Classes de traits ou politiques (1/4)(1/4)

� Ajout non invasif de propriétés ou fonctionnalités à un type

� Trait = propriété / caractéristique
� Attribut statique ou type interne

� Politique = fonctionnalité / comportement
� Méthode statique

� Permet de conserver une indépendance vis-à-vis d'un type

� Tout en produisant un code dédié
� Classe de traits ⇒ informations spécifiques
� Classe de politiques ⇒ comportements adaptés

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 123

Classes de traits ou politiques Classes de traits ou politiques (2/4)(2/4)
� Exemple: savoir si un type représente un entier

� Définition d'une classe de traits
template <typename T> struct EstEntier {
static const bool valeur = false;
};

template <> struct EstEntier<int> {
static const bool valeur = true;
};

template <> struct EstEntier<long> {
static const bool valeur = true;
};

� Utilisation de la classe de traits
if (EstEntier<X>::valeur) // code 1
else // code 2

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 124

Classes de traits ou politiques Classes de traits ou politiques (3/4)(3/4)

� Problématique: afficher le contenu d'un vecteur
template <typename T>

void afficher(const vector<T> & v) {

for (unsigned i = 0; i < v.size(); ++i)

cout << v[i] << " ";

}

� Le résultat n'est pas forcément celui attendu
� T = int ⇒ affichage entiers
� T = int * ⇒ affichage pointeurs

� Objectif: afficher des valeurs qu'il y ait indirection ou non
� La politique d'accès diffère suivant la nature de T
� Proposition d'une classe de politiques

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 125

Classes de traits ou politiques Classes de traits ou politiques (4/4)(4/4)

� Définition de la classe de politiques
template <typename T> struct AccesLecture {
static const T & getValeur(const T & v) { return v; }
static const T * getPointeur(const T & v) { return &v; }

};

template <typename T> struct AccesLecture<T *> {
static const T & getValeur(const T * p) { return *p; }
static const T * getPointeur(const T * p) { return p; }

};

� Utilisation de la classe de politiques
template <typename T>
void afficher(const vector<T> & v) {
for (unsigned i = 0; i < v.size(); ++i)
cout << AccesLecture<T>::getValeur(v[i]) << " ";

}

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 126

MMéétafonctions tafonctions (1/4)(1/4)

� Métafonction = classe générique agissant comme une fonction
� Permet l'exécution statique d'un algorithme

� Elément central de la métaprogrammation par génériques
� Métaprogrammation = code qui génère du code
� Métafonction = fonction statique qui produit du code dynamique

� Reçoit des paramètres et retourne un résultat
� Peuvent être des nombres statiques
� Peuvent être des types

� Nécessité de manipuler types et nombres indifféremment
� Métadonnée = type ou nombre statique
� Représentation unifiée par des classes génériques
� Métadonnée embarquée dans un membre de classe

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 127

MMéétafonctions tafonctions (2/4)(2/4)

� Pour les nombres
template <typename T,T VAL> struct Nombre {

typedef T type;

static const T valeur = VAL;

};

� Pour les types
template <typename T> struct Type

{ typedef T type; };

� Exemple: condition «si»
template <typename TEST,typename SI,typename SINON,

bool = TEST::valeur> struct Si : SINON {};

template <typename TEST,typename SI,typename SINON>

struct Si<TEST,SI,SINON,true> : SI {};

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 128

MMéétafonctions tafonctions (3/4)(3/4)

� Remarque: utilisation de l'héritage pour «retourner» le résultat

� Manipulation de nombres
template <typename N> struct EstNegatif

: Nombre< bool,N::valeur<0 > {};

template <typename N> struct ValeurAbsolue

: Si< EstNegatif<N>,

Nombre<typename N::type,-N::valeur>,

Nombre<typename N::type,N::valeur>

> {};

� Exemple d'utilisation
� y = ValeurAbsolue< Nombre<int,-5> >::valeur;

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 129

MMéétafonctions tafonctions (4/4)(4/4)

� Manipulation de types
class Algo1 { ... public: static void executer(); };

class Algo2 { ... public: static void executer(); };

template <typename T> struct MeilleurAlgo

: Si< EstEntier<T>,

Type<Algo1>,

Type<Algo2>

> {};

� Exemple d'utilisation
� MeilleurAlgo<int>::type::executer();

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 130

Structures de types Structures de types (1/3)(1/3)

� Au lieu de stocker des données, stocker des types
� Exemple connu: les «typelists»

� Structure de liste chaînée statique
template <typename TYPE,typename SUIVANT>
struct ListeType {
typedef TYPE element;
typedef SUIVANT suivant;
};

struct TypeNul {};

� Construction d'une liste de types
typedef ListeType<int,

ListeType<long,
ListeType<double,TypeNul>
>

> types_nombre_t;

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 131

Structures de types Structures de types (2/3)(2/3)

� Recherche d'un type
template <typename LISTE,typename TYPE>

struct Contient

: Ou< MemeType<typename LISTE::element,TYPE>,

Contient<typename LISTE::suivant,TYPE>

> {};

template <typename TYPE>

struct Contient<TypeNul,TYPE>

: Nombre<bool,false> {};

� Exemple d'utilisation
if (Contient<types_nombre_t,X>::valeur) // Code 1

else // Code 2

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 132

Structures de types Structures de types (3/3)(3/3)

� Métafonctions nécessaires à l'exemple précédent

� Comparer deux types
template <typename T1,typename T2>

struct MemeType : Nombre<bool,false> {};

template <typename T>

struct MemeType<T,T> : Nombre<bool,true> {};

� Opérateur «ou»
template <typename N1,typename N2> struct Ou

: Nombre<bool,N1::valeur || N2::valeur> {};

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 133

Patrons d'expressions Patrons d'expressions (1/4)(1/4)

� Terme anglais: Expression templates

� A partir de la surcharge d'opérateurs
⇒ arbre syntaxique d'une expression

� Objectifs
� Définir d'un langage spécifique embarqué dans C++

� EDSL (Embedded Domain-Specific Language)
� Optimiser l'évaluation d'une expression

� L'idée est de différer un calcul (e.g. a*b)
� En vue d'optimiser l'expression complète (e.g. a*b*c)

� Exemple: calcul matriciel

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 134

Patrons d'expressions Patrons d'expressions (2/4)(2/4)

� Surcharge ⇒ objet retourné au lieu du résultat attendu
� Exemple: a+b
� Retourne un objet: Addition<A,B>

� De cette manière, on peut représenter une expression complète
� Exemple: a+b*c
� Retourne un objet: Addition< A,Multiplication<B,C> >
� On obtient un arbre syntaxique

� Le calcul peut être optimisé
� Exemple: x = a+b*c
� Surcharge de l'opérateur d'affectation

⇒ appel méthode «evaluer» optimisée de l'expression complète

� Un aperçu (ultra light !)…

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 135

Patrons d'expressions Patrons d'expressions (3/4)(3/4)

� Représentation des opérations
template <typename E1,typename E2> class Addition {
protected: E1 e1;
protected: E2 e2;

public: Addition(const E1 & a,const E2 & b)
: e1(a),e2(b) {}

public: double evaluer(void) const
{ return (e1.evaluer() + e2.evaluer()); }

};

� Calcul différé
class Resultat {
protected: double v;

public: template <typename E>
Resultat & operator = (const E & e)
{ v = e.evaluer(); return (*this); }

};

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 136

Patrons d'expressions Patrons d'expressions (4/4)(4/4)

� Représentation des opérandes
class Operande {
protected: double v;

public: Operande(const double & a) : v(a) {}

public: const double & evaluer(void) const { return v; }
};

� Surcharge des opérateurs
template <typename E1,typename E2>
Addition<E1,E2> operator + (const E1 & a,const E2 & b)
{ return Addition<E1,E2>(a,b); }

� Exemple d'utilisation
Resultat r;
r = Operande(3) + Operande(17.2) + Operande(12.7);

