1S

PARTIE IV

Métaprogrammation
par les génériques

Bruno Bachelet
Luc Touraille

Christophe Duhamel

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012

Meétaprogrammation par les génériques (1/2)

Repose sur plusieurs mécanismes

Généricité / patrons de composants
o En C++: les templates

Instanciation des patrons sans surcout

o Au plus proche d'un code dédie

o En C++: chaque instanciation d'un générique = code dedie

o En Java: mécanisme de «type erasure» = pas de code dédié

Spécialisation «statique»
o Possibilité de spécialisation d'un composant genérique
o Basée sur le type (ou la valeur statique) des parametres génériques

Métaprogrammation par les génériques (2/2)

Objectifs
o Composants genériques (au sens large)
o Sans ou avec peu de baisse de performance

Le génie logiciel nous apprend que genéralement
o La généricité (au sens large) a un coat
o Recherche d'un compromis entre genéericité et efficacité

Mais avec la programmation généerique
o Beaucoup de travail a la compilation = peu de pertes

Quelques utilisations possibles

Evaluation partielle
o Optimisation de calculs
o Effectuer une partie d'un calcul a la compilation

Classes de traits ou politiques
o Fournir des informations sur les types
o Ajout non invasif de propriétés ou fonctionnalités

Métafonctions
o Fonctions statiques qui produisent du code dynamique
o Ecrire des algorithmes statiques

Structures de types
o Stockage de types (au lieu de données)
o Manipuler des ensembles de types

Patrons d'expressions
o Représentation d'une expression sous forme d'objets
o Définition d'un langage spécifigue embarque dans C++

Evaluation partielle (1/6)

Calcul = partie statique + partie dynamique

C++ = langage a 2 niveaux
o Code dynamique: compilé puis exécutée

o Code statique: interpreté a la compilation
Baseé sur les templates + des mécanismes statiques
Turing-complet = pas de limite theorique au niveau algorithmique

Programmation générigue = évaluation statique d'un calcul
o L'évaluation statique est genéralement partielle
o On cherchera a effectuer le maximum de calcul statiguement

Efficacité accrue a I'exécution
o Peut étre tres supérieure a I'évaluation dynamique

Evaluation partielle (2/6)

Exemple: factorielle n!

Version dynamique
| ong factorielle(int n) {

long r = 1;
for (int i =2; i <=n; i++) r *=1i;
return r;

}

Tout se passe a I'exécution
oy = factorielle(5);

Parametre statique = possibilité de calcul a la compilation

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012

117

Evaluation partielle (3/6)

= Version statique, avec fonction génerique
tenplate <int N> inline long factorielle(void)
{ return (N * factorielles<N-1>()); }

tenplate <> inline long factorielle<0>(void)
{ return 1; }

= Deéveloppement du calcul a la compilation
oy = factorielle<5>(); = y = 120;

= Défauts de cette solution
o Instanciation partielle interdite

o L'inlining peut étre refusé
= Exemple: code de la fonction trop long

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 118

Evaluation partielle (4/6)

Version statique, avec classe générigue
tenplate <int N> class Factorielle {
public: static const |ong val eur

= N * Factoriell e<N-1>::val eur;

b

tenpl ate <> class Factorielle<0> {
public: static const |long valeur = 1;

b

Développement du calcul a la compilation
o y = Factorielle :valeur = y = 120;

Avantages de cette solution
o Instanciation partielle possible
o Pas de probleme d'inlining

Conseil: privilegier l'utilisation d'une structure
o Membres et héritage publics par défaut = syntaxe allégée

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012

119

Evaluation partielle (5/6)

= Exemple d'évaluation partielle: puissance x"

= Version dynamique
doubl e pui ssance(double x,int n) {

double r = 1;
for (int 1 =1; 1 <=n; ++) r *= Xx;
return r;

}

= N est souvent une valeur statique
— évaluation statique d'une partie du calcul

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 120

Evaluation partielle (6/6)

= Version partiellement statique
tenmplate <int N> struct Puissance {
static doubl e cal cul er(doubl e x)
{ return (Puissance<N-1>::calculer(x) * x); }

'

tenpl ate <> struct Pui ssance<0> {
static double cal culer(double) { return 1.0; }

'

= Une partie du developpement du calcul a la compilation
a Yy = Puissance::calculer(1.2);
= y = puissance 5(1.2);

o doubl e pui ssance_5(doubl e Xx)
{ return x*x*x*x*x; }

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 121

Classes de traits ou politiques (7/4)

Ajout non invasif de propriétés ou fonctionnalités a un type

Trait = propriété / caracteristique
o Attribut statique ou type interne

Politique = fonctionnalité / comportement
o Methode statique

Permet de conserver une indéependance vis-a-vis d'un type
Tout en produisant un code dedié

o Classe de traits = informations spécifiques
o Classe de politiques = comportements adaptés

Classes de traits ou politiques (2/4)

= Exemple: savoir si un type représente un entier

= Définition d'une classe de traits
tenpl ate <typenane T> struct EstEntier {

static const bool val eur = fal se;:

b

tenmplate <> struct EstEntier<int> {
static const bool val eur = true;

'

tenplate <> struct EstEntier<|long> {
static const bool val eur = true;

'

= Utilisation de la classe de traits
| f (EstEntier<X>::valeur) // code 1

el se // code 2

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 123

Classes de traits ou politiques (3/4)

Problématique: afficher le contenu d'un vecteur

tenmpl ate <typenane T>

void afficher(const vector<T> & v) {

for (unsigned i = 0; | < v.size(),; ++i)
cout << v[I] << " ",

}

Le résultat n'est pas forcement celui attendu
o T =int = affichage entiers
o T =int* = affichage pointeurs

Objectif: afficher des valeurs gu'il y ait indirection ou non
o La politigue d'acces differe suivant la nature de T
o Proposition d'une classe de politiques

Classes de traits ou politiques (4/4)

= Définition de la classe de politiques
tenpl ate <typenane T> struct AcceslLecture {
static const T & getValeur(const T & v) { return v; }
static const T * getPointeur(const T &v) { return &v; }

3

tenpl ate <typenanme T> struct AcceslLecture<T *> {
static const T & getValeur(const T * p) { return *p; }
static const T * getPointeur(const T * p) { return p; }

b

= Ultilisation de la classe de politiques
tenpl ate <typenane T>
voi d afficher(const vector<T> & v) {
for (unsigned i = 0; I < v.size(); ++i)
cout << AcceslLecture<T>:.:getValeur(v[i]) << " ";

}

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 125

Métafonctions (1/4)

Métafonction = classe géenérique agissant comme une fonction
o Permet I'execution statiqgue d'un algorithme

Elément central de la métaprogrammation par generiques
o Meétaprogrammation = code qui génere du code
o Metafonction = fonction statique qui produit du code dynamique

Recoit des parametres et retourne un résultat
o Peuvent étre des nombres statiques
o Peuvent étre des types

Nécessité de manipuler types et nombres indifferemment
o Metadonnée = type ou nombre statique

o Représentation unifiée par des classes genérigues

o Metadonnée embarguée dans un membre de classe

Métafonctions (2/4)

Pour les nombres
tenpl ate <typenane T, T VAL> struct Nonbre {

typedef T type;
static const T val eur = VAL:

}

Pour les types
tenpl ate <typenane T> struct Type

{ typedef T type; };

Exemple: condition «Si»
tenpl ate <typenane TEST, typenanme SI,typenane S| NON,

bool = TEST::valeur> struct Si : SINON {};

tenpl ate <typenane TEST, typenane Sl,typenane S| NON>
struct SI<TEST, SI, SINON,true> : Sl {};

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 127

Métafonctions (3/4)

= Remarque: utilisation de I'héritage pour «retourner» le résultat

= Manipulation de nombres
tenpl ate <typenane N> struct EstNegatif

Nonbr e< bool , N: : val eur<0 > {};

tenpl ate <typenane N> struct Val eur Absol ue
Si < Est Negati f <N>,
Nonbr e<t ypenane N :type, - N :val eur >,
Nonbr e<t ypenane N:.:type, N :val eur>

> {};

= Exemple d'utilisation
o y = Val eur Absol ue< Nonbre<int,-5> >::val eur;

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 128

Métafonctions (4/4)

= Manipulation de types
class Algol { ... public: static void executer(); };

class Algo2 { ... public: static void executer(); };

tenpl ate <typenane T> struct MeilleurAl go
S < EstEnti er<T>,
Type<Al gol>,
Type<Al go2>

> {};

= Exemple d'utilisation
o MeilleurAlgo<int>::type::executer();

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 129

Structures de types (1/3)

= Au lieu de stocker des donneées, stocker des types
o Exemple connu: les «typelists»

= Structure de liste chainée statique
tenpl ate <typenane TYPE, t ypenane SU VANT>
struct ListeType {
t ypedef TYPE el enent;
t ypedef SUI VANT sui vant;

};

struct TypeNul {};

= Construction d'une liste de types
t ypedef ListeType<int,
Li st eType<I ong,

Li st eType<doubl e, TypeNul >
>

> types _nonbre t;

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 130

Structures de types (2/3)

= Recherche d'un type
tenpl ate <typenane LI STE,typenanme TYPE>
struct Contient
Qu< MeneType<typenane LI STE:: el enent, TYPE>,
Cont i ent <t ypenane LI STE: : sui vant, TYPE>

> {};

tenpl ate <typenane TYPE>
struct Contient<TypeNul, TYPE>
Nonmbr e<bool , fal se> {};

= Exemple d'utilisation
| f (Contient<types nonbre t,X>:.:valeur) // Code 1
el se // Code 2

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 131

Structures de types (3/3)

= Meétafonctions nécessaires a I'exemple précédent

= Comparer deux types
tenpl ate <typenane T1,typenane T2>

struct MeneType : Nonbre<bool, fal se> {};

tenpl ate <typenane T>
struct MenmeType<T, T> : Nonbre<bool ,true> {};

= Opérateur «ou»
tenmpl ate <typenane N1,typenanme N2> struct Qu

Nonbr e<bool , N1: :val eur || N2::val eur> {};

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 132

Patrons d'expressions (1/4)

Terme anglais: Expression templates

A partir de la surcharge d'opérateurs
— arbre syntaxique d'une expression

Objectifs
o Définir d'un langage spécifigue embargué dans C++
EDSL (Embedded Domain-Specific Language)

o Optimiser I'évaluation d'une expression
L'idée est de differer un calcul (e.g. a* b)

En vue d'optimiser I'expression complete (e.g. a*b* c)

Exemple: calcul matriciel

Patrons d'expressions (2/4)

Surcharge = objet retourné au lieu du résultat attendu
o Exemple: a+b
o Retourne un objet: Addi t 1 on<A, B>

De cette maniere, on peut représenter une expression complete
o Exemple: atb*c

o Retourne un objet: Addition< A Multiplication<B, & >
o On obtient un arbre syntaxique

Le calcul peut étre optimisé
o Exemple: x = a+b*c

o Surcharge de l'opérateur d'affectation
= appel méthode «eval uer » optimisée de I'expression complete

Un apercu (ultra light !)...

Patrons d'expressions (3/4)

= Représentation des opérations
tenpl ate <typenane El,typenane E2> class Addition {
protected: E1 el;
protected: E2 eZ2;

public: Addition(const E1 & a,const E2 & b)
el(a),e2(b) {}

publ i c: doubl e eval uer(voi d) const
{ return (el.evaluer() + e2.evaluer()); }

b

= Calcul différe
class Resultat {
protected: double v;

public: tenplate <typenane E>
Resultat & operator = (const E & e)
{ v = e.evaluer(); return (*this); }

b

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 135

Patrons d'expressions (4/4)

Représentation des opérandes
cl ass Operande {
prot ect ed: double v;

public: Operande(const double & a) : v(a) {}

public: const double & evaluer(void) const { return v; }

};

Surcharge des opérateurs

tenpl ate <typenane El,typenane E2>

Addi ti on<El, E2> operator + (const E1 & a,const E2 & b)
{ return Addition<El, E2>(a,b); }

Exemple d'utilisation
Resul tat r;

r = Operande(3) + Operande(17.2) + Qperande(12.7);

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 136

