
Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 193

PPARTIEARTIE VIVI

BibliothBibliothèèque standard STLque standard STL

Bruno BacheletBruno Bachelet

Luc TourailleLuc Touraille

Christophe DuhamelChristophe Duhamel

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 194

PlanPlan

� Historique

� Classes utilitaires

� Rappels
� Espaces de nommage
� Exceptions

� Principes généraux
� Itérateurs
� Foncteurs

� Conteneurs de la STL
� Conteneurs de séquences
� Conteneurs adapteurs
� Conteneurs associatifs

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 195

IntroductionIntroduction

� Développement récurrent des mêmes composants
� Structures de données: vecteur, pile, file, ensemble…
� Algorithmes: chercher, trier, insérer, extraire…

� Éviter de réinventer la roue
� Temps perdu (codage, débogage, optimisation)
� Utiliser l'existant (bibliothèques)

� Tous les langages modernes ont une bibliothèque
� Java, C#, Perl, Python
� C++

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 196

HistoriqueHistorique

� Concept de la généricité dès les années 70

� Alexander Stepanov
� Premiers développements de la STL en 1979
� Portage en ADA en 1987
� Portage en C++ en 1992

� Normalisée en 1998
� Avant: STL = Standard Template Library
� Après: Standard C++ Library
� Implication de HP puis SGI
� Documentation: http://www.sgi.com/tech/stl/

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 197

Classes utilitaires Classes utilitaires (1/2)(1/2)

� Chaîne de caractères
� Limite du char * en C

� Gestion de mémoire absente
� Source classique de fuites mémoires
� Pas de vrai type de données
� Pas de support d'opérations simples (e.g. concaténation)

� Classe string

� Gestion interne de la mémoire (forme normale de Coplien)
� Surcharge des opérateurs classiques (+, <<)
� Entête <string>

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 198

Classes utilitaires Classes utilitaires (2/2)(2/2)

� Exceptions
� Contrôle primitif des erreurs en C

� Utilisation du retour des fonctions
� Variable globale (errno)

� Prise en compte facultative de l'erreur

� Classe exception
� Bloc try / catch , mot-clé throw

� Gestion obligatoire
� Entête <exception>

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 199

Rappels: espaces de nommage Rappels: espaces de nommage (1/3)(1/3)

� En anglais: «namespaces»

� Permettent d'organiser les composants en modules
� Mais leur fonction est très limitée
� Déterminent simplement une zone avec un nom
� Aucune règle d'accessibilité (privé, publique…)

� Evitent les collisions de nom
� Exemple: std::vector ≠ boost::mpl::vector ≠

boost::fusion::vector

� Permettent de grouper des fonctions et des classes
� Interface d’une classe = méthodes mais aussi fonctions

� Les opérateurs externes notamment
� Appel de fonction résolu selon le namespace des arguments

� Dans le cas d’une fonction surchargée dans plusieurs namespaces

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 200

Rappels: espaces de nommage Rappels: espaces de nommage (2/3)(2/3)

� Mot-clé: namespace
� namespace monespace { /* Code */ }

� A rajouter sur tous les composants du module
� Bien penser au .hpp et au .cpp

� Imbrication possible
namespace monespace {

void f(void);
...

namespace monsousespace {
void g(void);
...

}
}

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 201

Rappels: espaces de nommage Rappels: espaces de nommage (3/3)(3/3)

� Utiliser un composant provenant d'un namespace
� monespace::f();
� monespace::monsousespace::g();

� Importer un symbole: déclaration «using »
� using std::vector;
� vector<int> v;
� std::string s;

� Importer tous les symboles: directive «using »
� using namespace std;
� vector<int> v;
� string s;

� Conseils pratiques
� Ne jamais mettre d’importation dans un fichier entête (.hpp)
� Préférer les déclarations aux directives dans un fichier d’implémentation (.cpp)

� Possibilité de créer des alias
� namespace fus = boost::fusion;

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 202

Exceptions: utilitExceptions: utilitéé (1/5)(1/5)

� Pour gérer les erreurs: les «exceptions»

� Mécanisme qui permet de séparer
� La détection d'une erreur
� La prise en charge de l'erreur

� Exemple: code de calcul + interface graphique
� Le code de calcul détecte des erreurs
� L'interface graphique est informée

et affiche un message dans une fenêtre

� Permet de conserver une modularité

� Exception = objet qui est créé lorsqu'une erreur survient

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 203

Exceptions: transmission Exceptions: transmission (2/5)(2/5)

� Mot-clé «throw » dans une méthode
� Au lieu de gérer l'erreur localement,

l'erreur est transmise à la méthode appelante
� On dit qu'une exception est «levée» / «lancée»
� if (erreur) throw std::string("oops !");

� Interruption de la suite normale du code

� L'objet transmis contient des renseignements sur l'erreur

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 204

Exceptions: dExceptions: déétection tection (3/5)(3/5)

� Pour détecter une exception…

� Il faut surveiller
� Bloc «try » définit une zone de surveillance
� try {

// Code susceptible de lancer une exception
}

� throw ⇒ suspension de l'exécution normale

� Il faut rattraper et traiter les exceptions
� Bloc «catch » décrit le traitement d'une exception
� catch(const exception & e) { /* Gestion exception */ }
� Reprise de l'exécution suspendue par «throw »

� Plusieurs «catch » peuvent se succéder
� Le premier qui correspond au type de l'erreur sera exécuté
� Donc placement des «catch » du plus spécifique au moins spécifique
� catch(const MonException & e) { ... }

catch(const std::exception & e) { ... }

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 205

Exceptions: dExceptions: déétection tection (4/5)(4/5)

� Obligation de rattraper toutes les exceptions potentielles
� Gestion immédiate: «catch » dans la méthode
� Possibilité de «renvoyer» à la méthode appelante avec «throw »

� Exemple
void lectureFichier(const std::string & nom)
{ /* Lecture des données d'un fichier */ }

void traitement(void) {
try {

lectureFichier("mon_fichier.dat");
// Code susceptible de lever un objet «exception»

}

catch(const ExceptionFichier & e)
{ std::cout << "Erreur ouverture fichier !" << std: :endl; }

catch(const std::exception & e)
{std::cout << "Erreur dans les données !" << std::e ndl; }

// Toujours exécuté, même si une exception s'est pr oduite
std::cout << "Fin du traitement << std::endl;

}

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 206

Exceptions: classes standards Exceptions: classes standards (5/5)(5/5)

� Si possible, utiliser une classe standard
� invalid_argument , out_of_range , overflow_error ...

� Sinon, créer ses classes d'exceptions
� Spécialiser la classe de base std::exception

ou une de ses sous-classes
� Encapsuler des informations sur l'erreur
� Eventuellement redéfinir la méthode what()

pour retourner un message décrivant l'erreur

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 207

Principes de la STLPrincipes de la STL

� Séparation du conteneur et des algorithmes
� Principe: «petit mais costaud»

� Classes spécialisées
� Uniquement les méthodes essentielles

� Stratégies d'accès / parcours aux conteneurs
� Impossible de toutes les prévoir
� Séparer ces stratégies et les conteneurs ⇒ itérateurs

� Algorithmes sur les conteneurs
� Impossible de tous les prévoir
� Séparer les algorithmes et les conteneurs
� Algorithmes «à trous» ⇒ foncteurs

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 208

ItItéérateurs rateurs (1/2)(1/2)

� Pour parcourir une collection: l'itérateur
� Pointe sur un élément d'une collection
� Permet de passer d'un élément à un autre

� Plusieurs itérateurs ⇒ parcours simultanés

� API indépendante de la véritable structure de données

� Différentes stratégies d'accès et de parcours
� Accès en lecture ou lecture/écriture
� Sens de parcours

� Implémentation d'un itérateur
� Il doit souvent connaître l'implémentation de son conteneur
� Deux possibilités

� Classe amie
� Classe imbriquée

� Dans les 2 cas, il apparaît comme un type imbriqué

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 209

ItItéérateursrateurs (2/2)(2/2)

� Indépendants du conteneur sous-jacent
� Il peut même ne pas y avoir de conteneur

� Séquences générées à la volée, lecture/écriture dans un flux...

� Utilisation homogène quelque soit le conteneur

� Permettent de représenter des sous-séquences

� Par rapport à un parcours avec index
� Beaucoup plus efficace pour certaines structures de données

� Exemples: liste, arbre

� Différents types de parcours possibles sur une même séquence
� Exemples: parcours préfixe, infixe et postfixe

� Modification de la séquence en cours d'itération possible

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 210

ItItéérateursrateurs C++ C++ (1/3)(1/3)

� Fonctionnalités
� Forme normale de Coplien

� Constructeur par défaut
� Constructeur par copie
� Opérateur d'affectation
� Destructeur

� Opérateurs de comparaison != et ==

� Attention: ne pas utiliser l'opérateur <

� Opérateur de déréférenciation *

� Opérateurs d'incrémentation ++ (pré- et post-fixé)

� Manipulation identique à celle des pointeurs
⇒ tableaux et conteneurs manipulables indifféremment

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 211

ItItéérateursrateurs C++ C++ (2/3)(2/3)

� 4 types d'itérateur par conteneur
� Types imbriqués

� conteneur::iterator
� conteneur::const_iterator
� conteneur::reverse_iterator
� conteneur::const_reverse_iterator

� const = accès en lecteur seule
� reverse = parcours inversé, dernier → premier

� Balises fournies par le conteneur

� Parcours premier → dernier: begin() , end()
� Parcours dernier → premier: rbegin() , rend()

beginbegin ()() end()end()

rend()rend() rbeginrbegin ()()

……11 nn22 nn-- 11

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 212

ItItéérateursrateurs C++ C++ (3/3)(3/3)

� Exemples d'utilisation
� Parcours d'un conteneur

� Conteneur c;
…
Conteneur::iterator it;

for (it = c.begin(); it != c.end(); ++it)
do_something(*it);

� Valeur de retour de l'algorithme «find »
� Permet une opération immédiate sur l'objet
� Complexité de l'accès au suivant: O(1)
� Conteneur c;

…
Conteneur::iterator it;
it = find(c.begin(),c.end(),elt);
do_something(*it);

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 213

Concepts d'Concepts d'ititéérateursrateurs (1/3)(1/3)

� Tous les itérateurs ne fournissent pas les mêmes fonctionnalités
� de parcours

� Exemple: impossible de reculer un itérateur sur une liste simplement
chaînée

� de manipulation de l'élément
� Exemple: impossible de modifier un élément

� «Concepts» pour spécifier différents types d'itérateurs

� Important pour écrire des algorithmes
� Documenter les fonctionnalités requises
� Proposer des implémentations spécialisées pour certains itérateurs

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 214

Concepts d'Concepts d'ititéérateursrateurs (2/3)(2/3)

� InputIterator
� Accès à l'élément en lecture, avancée dans la séquence

� OutputIterator
� Accès à l'élément en écriture, avancée dans la séquence

� ForwardIterator
� InputIterator + OutputIterator

� BidirectionalIterator
� ForwardIterator + recul dans la séquence

� RandomAccessIterator
� BidirectionalIterator + «saut» dans la séquence

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 215

Concepts d'Concepts d'ititéérateursrateurs (3/3)(3/3)

� Exemple
template <typename InputIterator, typename OutputIterator>
OutputIterator copy(InputIterator first, InputIterato r last,

OutputIterator result)
{

while (first != last) *result++ = *first++;
return result;

}

� Exemple de spécialisation: std :: advance (it,n)
� it doit modéliser InputIterator

� Si it modélise BidirectionalIterator , n peut être négatif
� Temps constant si it modélise RandomAccessIterator

� it += n;

� Temps linéaire sinon
� if (n > 0)

while (n-- > 0) ++it;

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 216

Foncteurs Foncteurs (1/4)(1/4)

� Représentation d'une fonction par un objet
� Permet l'écriture d'algorithmes «à trous»
� A l'exécution, on passe un foncteur
� Le foncteur comble les trous de l'algorithme
� Utilisation du design pattern «patron de méthode»

� Intérêts
� Paramétrisation des algorithmes

� D'autres solutions sont possibles (cf. design patterns)

� Possibilité d'avoir un état interne
� Attributs utiles pour mémoriser l'état et les paramètres

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 217

Foncteurs Foncteurs (2/4)(2/4)

� Exemple: algorithme de tri
template <typename T>

void trier(vector<T> & v) {

for (int i = 0; i < v.size()-1; ++i)

for (int j = i+1; j < v.size(); ++j)

if (v[j] < v[i])

{ T tmp = v[i]; v[i] = v[j]; v[j] = tmp; }

}

� Pas très flexible
� T doit implémenter l'opérateur <
� Comment faire un tri décroissant ?

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 218

Foncteurs Foncteurs (3/4)(3/4)
� Solution: passer la relation d'ordre en paramètre

� Algorithme de tri
template <typename T,typename R>
void trier(vector<T> & v, const R & rel) {

for (int i = 0; i<v.size()-1; ++i)
for (int j = i+1; j<v.size(); ++j)

if (rel.estAvant(v[j],v[i]))
{ T tmp = v[i]; v[i] = v[j]; v[j] = tmp; }

}

� Relation d'ordre (le «visiteur»)
� template <typename T> class RelationInf {

public: bool estAvant(const T & a,const T & b)
const { return x; }

};
� Ordre croissant: x = a < b
� Ordre décroissant: x = a > b
� Exemple d'appel: trier(v,RelationInf<int>());

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 219

Foncteurs Foncteurs (4/4)(4/4)
� Foncteur = objet qui a l'apparence d'une fonction

⇒ Surcharge de l'opérateur ()

� Opérateur ()
� Arité spécifiée par le concepteur

� Peut donc remplacer l'opérateur [] (e.g. une matrice)
� Syntaxe: type_retour operator() (paramètres)

� Relation d'ordre
template <typename T> class Inferieur {

public: bool operator () (const T & a,const T & b) cons t
{ return (a<b); }

};

� Algorithme de tri
template <typename T,typename R>
void trier(vector<T> & v, const R & rel) {

for (int i = 0; i<v.size()-1; ++i)
for (int j = i+1; j<v.size(); ++j)

if (rel(v[j],v[i]))
{ T tmp = v[i]; v[i] = v[j]; v[j] = tmp; }

}

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 220

Exemples de foncteurs Exemples de foncteurs (1/2)(1/2)

� Exemple: comparateur
� Principe

� Pas d'état interne
� Opérateur () prenant les deux objets à comparer

� Code foncteur
class Comparateur {

public:

bool operator() (const A & a1, const A & a2) const

{ return (a1.val() < a2.val()); }

};

� Code appel
Comparateur cmp;

A a1, a2;

std::cout << cmp(a1,a2) << std::endl;

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 221

Exemples de foncteurs Exemples de foncteurs (2/2)(2/2)

� Exemple: générateur de nombres pairs
� Principe

� Etat interne conservé par les attributs
� Opérateur () sans paramètres pour la génération des nombres

� Code foncteur
class GenerateurPair {

protected: int val;

public:

GenerateurPair(void) : val(0) {}

int operator() (void) { val+=2; return val; }

};

� Code appel
� GenerateurPair gen;

� std::cout << gen() << ' ' << gen() << std::endl;

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 222

Foncteurs standardsFoncteurs standards

� Classes de base
� Exposent les types des paramètres et de retour
� std::unary_function<Arg, Result>

� std::binary_function<Arg1, Arg2, Result>

� Foncteurs prédéfinis
� Arithmétiques: addition, soustraction, multiplication, division...

� plus<T> , minus<T> , multiplies<T> , divides<T> ...

� Comparaisons: inférieur, supérieur, égal...
� less<T> , less_equal<T> , equal_to<T> ...

� Opérateurs logiques: et, ou, non
� logical_and<T> , logical_or<T> ...

� Utilisent simplement les opérateurs correspondants

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 223

Manipulation de foncteursManipulation de foncteurs

� Création de foncteur
� A partir d'une fonction

� ptr_fun(pointeur_de_fonction)

� A partir d'une méthode
� mem_fun/mem_fun_ref(pointeur_de_methode)

� Adaptation de foncteur
� Négation: not1 , not2

� Fixation d'un paramètre: bind1st , bind2nd

� Exemple: compter les chaînes non vides dans un vecteur
vector<string> v;

...

int nbNonVides =

count_if(v.begin(), v.end(),

not1(mem_fun_ref(&string::empty)));

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 224

SSééparation conteneurparation conteneur--algorithmesalgorithmes

� Manipulation globale du conteneur
� Trois entités

� Un conteneur pour le stockage des objets
� Des itérateurs pour les accès aux objets
� Des algorithmes pour la manipulation des objets

� Fonctionnement conjoint
� Les algorithmes opèrent sur le conteneur via les itérateurs

Conteneur Algorithme

Itérateurs

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 225

Conteneurs de la STL Conteneurs de la STL (1/3)(1/3)
� Trois grandes classes de conteneurs

� Séquences élémentaires
� Vecteur, liste, file à double entrée

� Adaptations des séquences élémentaires
� Pile, file, file à priorité

� Conteneurs associatifs
� Ensemble avec/sans unicité
� Association avec clé unique/multiple

� Remarques
� Tous définis dans le namespace «std »
� Utilisation intensive de la généricité

� Type de données
� Allocateur de mémoire
� Comparateur
� …

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 226

Conteneurs de la STL Conteneurs de la STL (2/3)(2/3)

� Choix du conteneur
� Selon les fonctionnalités disponibles

� Un morceau d'API commun
� Un morceau d'API spécifique à chaque conteneur

� Selon la complexité des opérations
� Opérations en O(1), O(log n), O(n)

� Critères de choix
� Chercher le conteneur le plus «naturel» pour l'algo voulu
� Analyser la complexité du traitement
� Chercher le conteneur offrant la meilleure complexité globale

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 227

Conteneurs de la STL Conteneurs de la STL (3/3)(3/3)

� Fonctionnalités communes
� Forme Normale de Coplien
� Dimensionnement automatique de la capacité

� Exemple du vecteur
� Lorsque l'insertion d'un élément viole la capacité
� Augmentation de la capacité

� Balises des itérateurs
� Quelques méthodes

� size_t C:: size () const // Nombre d'éléments

� size_t C:: max_size () const // Nombre max d'éléments

� bool C:: empty () const // Est vide ?

� void C:: swap(C & cnt) // Echange de contenu

� void C:: clear () // Vide le conteneur

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 228

Conteneurs en sConteneurs en sééquences quences (1/2)(1/2)

� Vecteur
(vector)

� Liste
(list)

� File à double entrée
(deque)

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 229

Conteneurs en sConteneurs en sééquences quences (2/2)(2/2)

� Méthodes communes
� Insertion (avant la position indiquée)

� void S:: insert (S::iterator pos,T & elt)
� void S:: insert (S::iterator pos,int nb,T & elt)

� template <typename InputIterator>
void S:: insert (S::iterator pos,

InputIterator debut,InputIterator fin)

� Suppression
� S::iterator S:: erase (S::iterator pos)
� S::iterator S:: erase (S::iterator debut,S::iterator fin)

� Accès / ajout en tête et fin
� void S:: push_back (const T & elt)
� void S:: pop_back ()
� T & S:: front ()
� const T & S:: front () const
� T & S:: back ()
� const T & S:: back () const

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 230

VecteurVecteur

� Tableau qui se redimensionne automatiquement
� Eléments contigus en mémoire (compatibilité avec les tableaux C)

� Efficacité
+ Accès direct aux éléments (opérateur []) en O(1)
+ Ajout / suppression en fin en O(1) (amorti)
- Ajout / suppression ailleurs en O(n)

� Utilisation
� Entête: <vector>
� Déclaration: std::vector<T> v;
� Possède un autre paramètre template facultatif

� Allocateur, gestionnaire de la mémoire interne

� Méthodes spécifiques
� Contrôle capacité

� int V:: capacity () const // Capacité actuelle du vecteur
� void V:: reserve (int nb) // Ajustement de la capacité

� Accès par index aux éléments
� X & V:: operator[] (int idx) // Lecture/écriture
� const X & V:: operator[] (int idx) const // Lecture seule

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 231

ListeListe

� Liste doublement chaînée

� Efficacité
+ Ajout / suppression n'importe où en O(1)
- Pas d'accès direct aux éléments

� Utilisation
� Entête: <list>
� Déclaration : std::list<T> l;
� Possède aussi un paramètre facultatif pour l'allocateur

� Méthodes spécifiques
� Ajout / suppression en tête

� void L:: push_front (const T & elt)
� void L:: pop_front ()

� Suppression d'un élément
� void L:: remove (const T & elt)

� Autres algorithmes spécifiques
� sort , merge , splice , remove_if , unique …

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 232

File File àà double entrdouble entrééee
� Similaire au vecteur sauf

� Opérations en tête possibles
� Contiguïté des éléments non garantie

� Efficacité
+ Accès direct aux éléments (opérateur []) en O(1)
+ Ajout/suppression en tête et fin en O(1) (amorti)
- Ajout/suppression ailleurs en O(n)

� Utilisation
� Entête: <deque>
� Déclaration: std::deque<T> d;
� Possède aussi un paramètre facultatif pour l'allocateur

� Méthodes spécifiques
� Pas de contrôle de capacité
� Ajout / suppression en tête

� void D:: push_front (const T & elt)
� void D:: pop_front ()

� Accès par index aux éléments
� X & D:: operator[] (int idx)
� const X & D:: operator[] (int idx) const

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 233

Conteneurs Conteneurs adapteursadapteurs (1/3)(1/3)

� Pile
(stack)

� File
(queue)

� File à priorité
(priority_queue)

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 234

Conteneurs Conteneurs adapteursadapteurs (2/3)(2/3)

� Définis à partir d'un conteneur en séquence
� Celui-ci est paramétrable
� Utilise la structure de données du conteneur

� Propose une API spécifique
� Celle-ci est réduite
� Pas d'itérateurs

� Mécanisme de délégation
� Agrégation du conteneur
� Délégation des opérations au conteneur

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 235

Conteneurs Conteneurs adapteursadapteurs (3/3)(3/3)

� Mécanisme de délégation

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 236

PilePile
� Accès seulement au sommet de la pile

� Pas de possibilité de voir les éléments empilés

� Utilisation
� Entête: <stack>
� Déclaration

� std::stack<T> s; // Conteneur par défaut = deque<T>
� std::stack<T,std::vector<T> > s;

� Méthodes spécifiques
� Empilement / dépilement

� int S:: push (const T & elt)
� void S:: pop ()

� Accès au sommet
� T & S:: top ()
� const T & S:: top () const

� Comparaison de piles (car impossible de voir l'empilement)
� bool operator== (const stack<T> & s1,const stack<T> & s2)
� bool operator< (const stack<T> & s1,const stack<T> & s2)

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 237

FileFile
� Structure FIFO (First In First Out)

� Ajout en fin, retrait en tête
� Pas de possibilité de voir les élément dans la file

� Utilisation
� Entête: <queue>
� Déclaration

� std::queue<T> q; // Conteneur par défaut = deque<T>
� std::queue<T,std::list<T> > q;
� Ne peut pas utiliser std::vector (n'a pas pop_front())

� Méthodes spécifiques
� Ajout / retrait

� int Q:: push (const T & elt)
� void Q:: pop ()

� Accès aux extrémités
� front() , back()

� Comparaison de files
� Opérateurs == et <

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 238

File File àà prioritprioritéé

� File d'attente à priorité
� Ajout en fin, retrait de l'élément le plus «grand» ⇒ foncteur comparateur
� Pas de possibilité de voir les éléments dans la file

� Utilisation
� Entête: <queue>
� Déclaration

� std::priority_queue<T> p; // Conteneur par défaut = vector<T>
// Comparateur par défaut = less<T>

� std::priority_queue<T,std::deque<T>,std::greater<T> > q;
� Ne peut pas utiliser std::list (n'a pas operator[])

� Méthodes spécifiques
� Constructeur (qui attend un objet comparateur)

� P::P(Comparateur & c = Comparateur())

� Ajout / retrait
� int P:: push (const T & elt)
� void P:: pop ()

� Accès au plus grand
� T & P:: top ()
� const T & P:: top () const

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 239

Conteneurs associatifs Conteneurs associatifs (1/5)(1/5)

� Ensemble avec unicité
(set)

� Ensemble sans unicité
(multiset)

� Association avec unicité
(map)

� Association sans unicité
(multimap)

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 240

Association Association (1/2)(1/2)

� Principe de l'association
� Associer une clé à chaque élément
� On accède à l'élément par sa clé

� Structure utilisée pour l'association: std ::pair
template <typename T1,typename T2>

struct pair {

T1 first;

T2 second;

pair(void) {}

pair (const T1 & t1,const T2 & t2)

: first(t1), second(t2) {}

};

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 241

Association Association (2/2)(2/2)

� Création d'une paire
� p = pair<int,double>(13,27.14);

� Obligé d'écrire les types paramètres de la paire

� Pour éviter d'écrire les types: std :: make_pair ()
template <typename T1, typename T2>

pair<T1,T2> make_pair(const T1 & cle,

const T2 & elt)

{ return pair<T1,T2>(cle,elt); }

� Utilise le polymorphisme statique
� p = make_pair(13,27.14);

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 242

Conteneurs associatifs Conteneurs associatifs (2/5)(2/5)

� Conteneurs associatifs triés sur la clé
� Nécessitent une relation d'ordre sur les clés

⇒ foncteur comparateur
� Représentation interne typique: RB-tree

� Ensembles
� set ou multiset
� L'élément contient sa clé

� Associations
� mapou multimap
� Les éléments stockés sont des associations clé-valeur
� first = clé
� second = valeur associée

� Clé unique ou multiple ?
� Unicité ⇒ set ou map
� Multiplicité ⇒ multiset ou multimap

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 243

Conteneurs associatifs Conteneurs associatifs (3/5)(3/5)

� Attention !
� set et multiset possèdent un seul paramètre: set<V>

� mapet multimap possèdent deux paramètres: map<K,V>

� Pour set et multiset , T = V
� Pour mapet multimap , T = pair<K,V>

� Méthodes communes
� Constructeurs

� A::A(void)

� template <typename InputIterator>
A::A(InputIterator deb,InputIterator fin)

� Paramètre facultatif: le comparateur de clés

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 244

Conteneurs associatifs Conteneurs associatifs (4/5)(4/5)

� Méthodes communes
� Insertions

� pair<A::iterator,bool> A:: insert (const T & elt)

� A::iterator
A:: insert (A::iterator pos,const T & elt)

� template <typename InputIterator>
void A:: insert (InputIterator deb,

inputIterator fin)

� Suppressions
� void A:: erase (A::iterator pos)

� void A:: erase (A::iterator deb,A::iterator fin)

� A::size_type A:: erase (const A::key_type & cle)

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 245

Conteneurs associatifs Conteneurs associatifs (5/5)(5/5)

� Méthodes communes
� Accès aux éléments

� A::size_type A:: count (const A::key_type & cle) const
� Nombre d'éléments ayant la clé fournie

� A::iterator A:: find (const A::key_type & cle) const
� Itérateur sur le premier élément ayant la clé fournie ou A::end() sinon

� A::iterator
A:: lower_bound (const A::key_type & cle) const
� Itérateur sur le 1er élément dont la clé n'est pas inférieure à celle fournie

� A::iterator
A:: upper_bound (const A::key_type & cle) const
� Itérateur sur le 1er élément dont la clé est supérieure à celle fournie

� pair<A::iterator,A::iterator>
A:: equal_range (const A::key_type & cle) const
� Fournit un encadrement des éléments ayant la clé fournie

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 246

Ensembles Ensembles (1/2)(1/2)

� Conteneur trié d'éléments contenant leur propre clé

� Utilisation
� Entêtes: <set> / <multiset>

� Déclaration
� std::set<V> s; // Comparateur par défaut = less<V>

� std::set<V,greater<V> > s;

� Possède aussi un paramètre facultatif pour l'allocateur

� Méthodes spécifiques
� Insertion dans «set »

� pair<S::iterator,bool> S:: insert (const V & elt)

� Insertion dans «multiset »
� M::iterator M:: insert (const V & elt)

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 247

Ensembles Ensembles (2/2)(2/2)

� Méthodes spécifiques
� Fonctions ensemblistes (entête <algorithm>)

� Entre deux ensembles [deb1,fin1) et [deb2,fin2)
� Ensembles décrits par des itérateurs

� template <typename InputIterator1,typename InputIterat or2,
typename OutputIterator>

OutputIterator set_union (InputIterator1 deb1,
InputIterator1 fin1,
InputIterator2 deb2,
InputIterator2 fin2,
OutputIterator res)

� InputIterator1 : type des itérateurs du 1er ensemble
� InputIterator2 : type des itérateurs du 2nd ensemble
� OutputIterator : type des itérateurs pour l'ensemble résultat

� Exemples
� bool includes (deb1, fin1, deb2, fin2)
� OutputIterator set_intersection (deb1, fin1, deb2, fin2, res)
� OutputIterator set_difference (deb1, fin1, deb2, fin2, res)
� OutputIterator set_symmetric_difference (deb1, fin1, deb2, fin2, res)

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 248

Associations Associations (1/2)(1/2)

� Conteneur trié d'éléments associés à une clé

� Utilisation
� Entêtes: <map> / <multimap>

� Déclaration
� std::map<K,V> s; // Comparateur par défaut = less<K >

� std::map<K,V,greater<K> > s;

� Possède aussi un paramètre facultatif pour l'allocateur

� Méthodes spécifiques
� pair<M::iterator,bool>

M:: insert (const pair<K,V> &)

� V & M:: operator[] (const K & cle)

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 249

Associations Associations (2/2)(2/2)

� Remarques sur l'opérateur []
� Permet un accès indexé similaire au vecteur
� Index = clé
� Complexité d'accès en O(log n)

� Attention: si la clé n'existe pas dans le conteneur, elle est
ajoutée et associée à l'élément par défaut (V())

� Il est conseillé d'utiliser l'opérateur [] pour
� l'écriture (insertion)
� la lecture dont on est sûr de l'existence de la clé

� Si on n'est pas sûr de l'existence d'une clé
� Appel préalable à find() ou count()

� Utilisation des itérateurs pour parcourir

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 250

Types de donnTypes de donnéées interneses internes

� Les conteneurs STL définissent des types internes
� Embarqués dans les classes

� Pour tous les conteneurs
� C::value_type : type des éléments stockés

� Pour les associations: pair<K,V>
� C::reference : type d'une référence sur un élément stocké
� C::const_reference : type d'une référence constante sur un

élément stocké
� C::size_type : type d'entier utilisé pour compter les éléments
� C::iterator et variations: types des itérateurs du conteneur

� Pour les conteneurs associatifs
� C::key_type : type des clés

� Pour les associations: K
� Pour les ensembles: V

� C::key_compare : comparateur des clés
� C::value_compare : comparateur des éléments

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 251

Algorithmes de la STL Algorithmes de la STL (1/2)(1/2)

� Collection de fonctionnalités classiques
� Copier
� Chercher
� Trier
� Insérer, supprimer, modifier
� Partitionner, fusionner
� Réorganiser

� Remarques
� Tous définis dans le namespace std

� Définis indépendamment des conteneurs

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 252

Algorithmes de la STL Algorithmes de la STL (2/2)(2/2)

� Manipulent des itérateurs
� Générique: possibilité de passer n'importe quel itérateur/pointeur
� Itérateur de début et de fin = séquence où lire les éléments
� Parfois itérateur de sortie pour écrire le résultat

� Souvent paramétrés par une opération
� Principe du « patron de méthode » (algorithme à trous)
� Générique: possibilité de passer un foncteur ou un pointeur de fonction
� Comparateur, prédicat, générateur...

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 253

Boucle Boucle ««pour chaquepour chaque»»

� Applique une opération à chaque élément d'une séquence

� Paramétré par une opération unaire

� Exemple
void ajouterPrefix(std::string & adresse)
{

adresse = "http://www." + adresse;
}
...
std::vector<std::string> adresses;
...
for_each(adresses.begin(), adresses.end(), ajouterP refix);

� «Vraie» boucle foreach dans C++11

253

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 254

InterrogationInterrogation

� Recherche d'un élément par valeur
� itérateur find(début, fin, valeur)

� Recherche d'un élément ayant une propriété donnée
� itérateur find_if(début, fin, prédicat)

� Comptage du nombre d'éléments
� égaux à une valeur : entier count(début, fin, valeur)

� ayant une propriété : entier count_if(début, fin, prédicat)

� Test d'égalité de deux séquences
� booleen equal(debut1, fin1, debut2, fin2)

254

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 255

CopieCopie

� Copie de tous les éléments
� itérateur copy(début, fin, résultat)

� Copie des éléments ayant une certaine propriété
� copy_if oublié dans C++03 !

� Présent dans C++11
� Équivalence: remove_copy_if(... not1(predicat));

� Exemple
vector<int> v;

int buffer[5];

list<int> l;

copy(v.begin(), v.end(), buffer);

copy(buffer, buffer + 5, back_inserter(l));

copy(l.begin(), l.end(), ostream_iterator<int>(cout , " "));

255

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 256

««SuppressionSuppression»»

� «Suppression» d'une valeur
� itérateur remove(début, fin, valeur)

� «Suppression» des éléments ayant une certaine propriété
� itérateur remove_if(début, fin, prédicat)

� Attention ! remove déplace seulement à la fin de la séquence
� Retourne un itérateur sur la «nouvelle fin»
� Coupler avec Conteneur::erase pour supprimer vraiment

� Exemple
v.erase(remove(v.begin(), v.end(), 42), v.end());

� Versions non modifiantes
� itérateur remove_copy(début, fin, résultat, valeur)

� itérateur remove_copy_if(début, fin, résultat, prédi cat)

256

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 257

RemplacementRemplacement

� Remplacement d'une valeur
� void replace(début, fin, ancienneValeur, nouvelleVal eur)

� Remplacement des éléments ayant une certaine propriété
� void replace_if(début, fin, prédicat, nouvelleValeur)

� Versions non modifiantes
� itérateur replace_copy(début, fin, résultat,

ancienneValeur, nouvelleValeur)

� itérateur replace_copy_if(début, fin, résultat,

prédicat, nouvelleValeur)

257

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 258

TransformationTransformation

� Appliquer une opération à chaque élément
et stocker le résultat dans une autre séquence
� itérateur transform(début, fin, résultat, opérationU naire)

� Exemple
list<string> adressesModifiees;

transform(adresses.begin(), adresses.end(),

back_inserter(adressesModifiees),

ajouterPrefixe);

� Appliquer une opération binaire sur les éléments
de deux séquences (deux-à-deux)
� itérateur transform(début1, fin1,

début2,

résultat,

opérationBinaire)

258

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 259

Ordre Ordre (1/2)(1/2)

� Tri avec opérateur <
� void sort(début, fin)

� Tri avec comparateur personnalisé
� void sort(début, fin, comparateur)

� Tri stable
� Conserve l'ordre des éléments équivalents
� void stable_sort(début, fin[, comparateur])

� Mélange
� Par défaut, utilise rand()

� void random_shuffle (début, fin[, générateurAléatoire])

259

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 260

Ordre Ordre (2/2)(2/2)

� Inversion
� void reverse(début, fin)

� void reverse_copy(début, fin, résultat)

� Rotation
� Déplace les éléments de façon à ce que milieu soit au début
� void rotate(début, milieu, fin)

� void rotate_copy(début, milieu, fin, résultat)

260

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 261

Remplissage d'une sRemplissage d'une sééquencequence

� Valeur fixe = passage d'une valeur

� Valeur variable = passage d'un générateur
� Pointeur de fonction ou foncteur

� Début et fin fournis...
� Remplissage de toute la séquence
� void fill(début, fin, valeur)

� void generate(début, fin, générateur)

� ...ou nombre d'éléments fournis
� void fill_n(résultat, n, valeur)

� void generate_n(résultat, n, générateur)

261

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 262

UtilitairesUtilitaires

� Minimum / Maximum
� Entre deux valeurs

� min /max(a, b)

� D'une séquence
� itérateur min /max_element(début, fin[, comparateur])

� Échange de deux valeurs
� void swap(a, b)

� Par défaut, copie dans un temporaire
� Peut/doit être spécialisé pour être plus efficace

� Par exemple, échange d'un attribut pointeur
pour éviter la copie des éléments pointés

� Très utilisé
� Dans les algorithmes
� Pour «compresser» un conteneur STL

� La méthode clear() ne réduit pas la capacité du conteneur

� Pour implémenter l'opérateur = (copy-and-swap)
� Garantir une copie «sécurisée»

262

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 263

Quelques concepts liQuelques concepts liéés s àà la STLla STL

� Itérateur
� «Pointeur» sur un élément d'un conteneur
� Permet la séparation conteneur-algorithmes

� Foncteur
� «Fonction» représentée sous la forme d'un objet
� Sa classe surcharge l'opérateur ()
� Permet de paramétrer les algorithmes

� Allocateur
� Objet chargé de la gestion de la mémoire dans un conteneur
� Permet d'adapter l'allocation mémoire

� Optimisation: «pools» d'objets
� Sécurité: multithreading
� Support: mémoire en fichier

� Traits
� API commune qui permet de connaître les caractéristiques d'un conteneur

� Exemple: les types internes
� Permet aux conteneurs d'être interchangeables

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 264

Conclusion sur la STLConclusion sur la STL

� Avantages
� Ensemble de fonctionnalités courantes
� Code performant et fiable

� Inconvénients
� Ceux des codes génériques

� Code instancié plusieurs fois
� Peu de vérification préalable sur les types paramètres

⇒ erreurs de compilation difficiles à déchiffrer
� Peu de vérification de cohérence

� Exemple: débordement des itérateurs

� Etat actuel de la STL
� API qui commence à dater
� Certaines classes doivent être revues (e.g. string)

� Evolution prévue
� Intégration de certaines biliothèques Boost

� threads, regex, random, tables de hachage
� Draft TR1 et norme C++11

