1S

PARTIE VI
Bibliotheque standard STL

Bruno Bachelet
Luc Touraille

Christophe Duhamel

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012

Historique
Classes utilitaires

Rappels
o Espaces de nommage
o EXxceptions

Principes généraux
o Itérateurs
o Foncteurs

Conteneurs de la STL
o Conteneurs de séquences
o Conteneurs adapteurs
o Conteneurs associatifs

Plan

Introduction

Développement récurrent des mémes composants
o Structures de données: vecteur, pile, file, ensemble...
o Algorithmes: chercher, trier, insérer, extraire...

Eviter de réinventer la roue
o Temps perdu (codage, débogage, optimisation)
o Utiliser I'existant (bibliotheques)

Tous les langages modernes ont une bibliotheque

o Java, C#, Perl, Python
o C++

Historique

Concept de la géneéricité des les années 70

Alexander Stepanov

o Premiers développements de la STL en 1979
o Portage en ADA en 1987

o Portage en C++ en 1992

Normalisée en 1998
o Avant: STL = Standard Template Library
Apres: Standard C++ Library

U
o Implication de HP puis SGI
o Documentation: http://www.sgi.com/tech/stl/

Classes utilitaires (1/2)

Chaine de caracteres

o Limiteduchar* enC

Gestion de mémoire absente

Source classique de fuites mémoires

Pas de vrail type de données

Pas de support d'opérations simples (e.g. concatéenation)

a0 Classe string

Gestion interne de la mémoire (forme normale de Coplien)
Surcharge des opérateurs classiques (+, <<)
Entéte <string>

Classes utilitaires (2/2)

Exceptions

o Controle primitif des erreurs en C

Utilisation du retour des fonctions
Variable globale (errno)

Prise en compte facultative de l'erreur

0 Classe exception
Bloc try [/ catch , mot-clé throw

Gestion obligatoire
Entéte <exception>

Rappels: espaces de nommage (7/3)

En anglais: «xnamespaces»

Permettent d'organiser les composants en modules
o Mais leur fonction est tres limitée

o Deéterminent simplement une zone avec un nom

o Aucune regle d'accessibilité (prive, publique...)

Evitent les collisions de nom

o Exemple: std::vector # boost::mpl::vector a
boost::fusion::vector

Permettent de grouper des fonctions et des classes
a Interface d'une classe = méthodes mais aussi fonctions
Les opérateurs externes notamment

o Appel de fonction resolu selon le namespace des arguments
Dans le cas d’'une fonction surchargée dans plusieurs namespaces

Rappels: espaces de nommage (2/3)

= Mot-clé: namespace
o namespace monespace {/* Code */}

o A rajouter sur tous les composants du module
o Blen penser au .hpp etau .cpp

= Imbrication possible
namespace monespace {
void f(void);

namespace monsousespace {
void g(void);

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 200

Rappels: espaces de nommage (3/3)

Utiliser un composant provenant d'un namespace
o monespace::f();
o monespace::monsousespace::g();

Importer un symbole: déclaration «using »
o using std::vector;

o vector<int> v;

o std::string s;

Importer tous les symboles: directive «using »
o using namespace std;

o vector<int>v;

o string s;

Conseils pratiques
o Ne jamais mettre d’'importation dans un fichier entéte (.hpp)
o Préférer les déclarations aux directives dans un fichier d’'implémentation (.cpp)

Possibilité de créer des alias
o nhamespace fus = boost::fusion;

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 201

Exceptions: utilité (1/5)

Pour gérer les erreurs: les «exceptions»

Mecanisme qui permet de séparer
o La deétection d'une erreur
o La prise en charge de l'erreur

Exemple: code de calcul + interface graphique

o Le code de calcul détecte des erreurs

o L'interface graphique est informée
et affiche un message dans une fenétre

Permet de conserver une modularité

Exception = objet qui est crée lorsqu'une erreur survient

Exceptions: transmission (2/5)

Mot-clé «throw » dans une méthode

Q

Au lieu de gérer l'erreur localement,
I'erreur est transmise a la méthode appelante

On dit gu'une exception est «levee» / «lancee»
If (erreur) throw std::string("oops !);

Interruption de la suite normale du code

L'objet transmis contient des renseignements sur l'erreur

Exceptions: détection (3/5)

Pour détecter une exception...

Il faut survelller
o Bloc «try » définit une zone de surveillance

o try {
I/l Code susceptible de lancer une exception

}

o throw = suspension de I'exécution normale

Il faut rattraper et traiter les exceptions

o Bloc «catch » décrit le traitement d'une exception

o catch(const exception & e) { /* Gestion exception */ }
o Reprise de I'exécution suspendue par «throw »

Plusieurs «catch » peuvent se succéder
o Le premier qui correspond au type de l'erreur sera exécute
o Donc placement des «catch » du plus spécifigue au moins speécifique

o catch(const MonException &e){...}
catch(const std::exception & e) { .. }

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 204

Exceptions: détection (4/5)

Obligation de rattraper toutes les exceptions potentielles
o Gestion immédiate: «catch » dans la méthode
o Possibilité de «renvoyer» a la méthode appelante avec «throw »

Exemple
void lectureFichier(const std::string & nom)
{ I* Lecture des données d'un fichier */ }

void traitement(void) {
try {
lectureFichier("mon_fichier.dat");
/I Code susceptible de lever un objet «exception»

}

catch(const ExceptionFichier & e)
{ std::cout << "Erreur ouverture fichier !" << std: -endl; }

catch(const std:.exception & e)
{std::cout << "Erreur dans les données !" << std::e ndl; }

I/l Toujours exécute, méme si une exception s'est pr oduite
std::cout << "Fin du traitement << std::endl;

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 205

Exceptions: classes standards (5/5)

Si possible, utiliser une classe standard
o Invalid_argument , out_of range , overflow _error

Sinon, créer ses classes d'exceptions

o Spécialiser la classe de base std::exception
OU une de ses sous-classes

o Encapsuler des informations sur I'erreur

o Eventuellement redéfinir la méthode what()
pour retourner un message décrivant I'erreur

Principes de la STL

Séparation du conteneur et des algorithmes

o Principe: «petit mais costaud»
Classes specialisées
Uniguement les méthodes essentielles

Stratégies d'acces / parcours aux conteneurs
o Impossible de toutes les prévoir
0 Seéparer ces stratégies et les conteneurs = itérateurs

Algorithmes sur les conteneurs

o Impossible de tous les prévoir

o Separer les algorithmes et les conteneurs
o Algorithmes «a trous» = foncteurs

Itérateurs (1/2)

Pour parcourir une collection: l'itérateur
o Pointe sur un élement d'une collection
o Permet de passer d'un élément a un autre

Plusieurs iterateurs = parcours simultanes
API indépendante de la véritable structure de donnees

Différentes stratégies d'acces et de parcours
o Acces en lecture ou lecture/écriture
o Sens de parcours

Implémentation d'un itérateur
o Il doit souvent connaitre lI'implémentation de son conteneur
o Deux possibilités

Classe amie

Classe imbriquée

o Dans les 2 cas, il apparait comme un type imbriqué

Itérateurs (2/2)

Indépendants du conteneur sous-jacent
o |l peut méme ne pas y avoir de conteneur

Séguences geénerées a la volée, lecture/écriture dans un flux...
o Utilisation homogene quelgue soit le conteneur

Permettent de représenter des sous-séquences

Par rapport a un parcours avec index

o Beaucoup plus efficace pour certaines structures de données
Exemples: liste, arbre

o Différents types de parcours possibles sur une méme séquence
Exemples: parcours préfixe, infixe et postfixe

o Modification de la séquence en cours d'itération possible

Itérateurs C++ (1/3)

Fonctionnalités

o Forme normale de Coplien
Constructeur par défaut
Constructeur par copie
Operateur d'affectation
Destructeur
o Opérateurs de comparaison = et ==
Attention: ne pas utiliser I'opérateur <
o Opérateur de déréférenciation *

0 Opérateurs d'incréementation ++ (pré- et post-fixé)

Manipulation identique a celle des pointeurs
= tableaux et conteneurs manipulables indifferemment

Itérateurs C++ (2/3)

4 types d'itérateur par conteneur
o Types imbriqués
conteneur::iterator
conteneur::Const_iterator
conteneur::reverse_iterator
conteneur: :Const_reverse_ite rator

o const = acces en lecteur seule
0 reverse = parcours inverse, dernier — premier

Balises fournies par le conteneur

l_ rend) << —— rbegin ()
_Y. Y .

1 2 n-1| n

begin () _T > end() _T

o Parcours premier — dernier: begin() , end()
o Parcours dernier - premier: rbegin() , rend()

Itérateurs C++ (3/3)

= Exemples d'utilisation

o Parcours d'un conteneur
= Conteneur c;

Conteneur::iterator it;

for (it = c.begin(); it != c.end(); ++it)
do_something(*it);

o Valeur de retour de l'algorithme «find »
= Permet une opération immediate sur I'objet

= Complexité de l'acces au suivant: O(1)
= Conteneur c;

E)bnteneur::iterator It;
it = find(c.begin(),c.end(),elt);
do_something(*it);

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 212

Concepts d'itérateurs (7/3)

Tous les itérateurs ne fournissent pas les mémes fonctionnalités

o de parcours

Exemple: impossible de reculer un itérateur sur une liste simplement
chainée

o de manipulation de 'élément
Exemple: impossible de modifier un élément

«Concepts» pour specifier differents types d'itérateurs

Important pour écrire des algorithmes
o Documenter les fonctionnalités requises
o Proposer des implémentations spécialisées pour certains iterateurs

Concepts d'itérateurs (2/3)

Inputlterator
o Acces a lI'élément en lecture, avancee dans la sequence

Outputlterator
o Acces a I'élément en écriture, avancee dans la sequence

ForwardlIterator
o Inputlterator + Outputlterator

Bidirectionallterator
o Forwardlterator + recul dans la séquence

RandomAccessliterator
o Bidirectionallterator + «Saut» dans la séquence

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 214

Concepts d'itérateurs (3/3)

= Exemple
template <typename Inputlterator, typename Outputlterator>
Outputlterator copy(Inputlterator first, Inputlterato r last,
Outputlterator result)
{

while (first I= last) *result++ = *first++;
return result;

}

= Exemple de spécialisation: std :: advance (it,n)
o it doit modéliser Inputlterator

o Siit modélise Bidirectionallterator , N peut étre négatif
o Temps constant si it modélise RandomAccesslterator

m it +=n;
o Temps linéaire sinon

m f (n > O)

while (n-- > 0) ++it;

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 215

Foncteurs (1/4)

Représentation d'une fonction par un objet

o Permet I'écriture d'algorithmes «a trous»

a A l'exécution, on passe un foncteur

o Le foncteur comble les trous de l'algorithme

o Utilisation du design pattern «patron de méthode»

Intéréts

o Parametrisation des algorithmes
D'autres solutions sont possibles (cf. design patterns)

o Possibilité d'avoir un éetat interne
Attributs utiles pour mémoriser I'état et les parametres

Foncteurs (2/4)

= Exemple: algorithme de tri
template <typename T>
void trier(vector<T> & v) {
for (int 1=0;1<v.size()-1; ++i)
for (int | =1+1;] < v.size(); ++))
It (vl < vli)
{ T tmp =V[iJ; v[i] = v[J]]; v[)] = tmp; }

= Pas tres flexible
o T doit implémenter I'opérateur <

o Comment faire un tri décroissant ?

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 217

Foncteurs (3/4)

Solution: passer la relation d'ordre en parametre

Algorithme de tri
template <typename T,typename R>
void trier(vector<T> & v, const R & rel) {
for (int 1 =0; i<v.size()-1; ++i)
for (int | =1+1; j<v.size(); ++))
if (rel.estAvant(v[j],v[i]))
} { Ttmp =V[i]; v[i] = v[i[; v[i] = tmp; }

Relation d'ordre (le «visiteur»)

o template <typename T> class RelationInf {
public: bool estAvant(const T & a,const T & b)
const { return X; }

I3

o Ordre croissant: x=a<b
o Ordre décroissant; x=a > Db
o Exemple d'appel: trier(v,RelationInf<int>());

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012

218

Foncteurs (4/4)

= Foncteur = objet qui a I'apparence d'une fonction
— Surcharge de l'opérateur ()

= Opérateur ()
o Arité spécifiee par le concepteur
= Peut donc remplacer l'opérateur [| (e.g. une matrice)
0 Syntaxe: type_retour operator() (parametres)

= Relation d'ordre

template <typename T> class Inferieur {
public: bool operator () (const T & a,const T & b) cons t
{ return (a<b); }

g

= Algorithme de tri
template <typename T,typename R>

void trier(vector<T> & v, const R & rel) {
for (int i =0; i<v.size()-1; ++i)
for (int j = i+1; j<v.size(); ++))
if (rel(v[j],v[i]))
{Ttmp =V[iJ; v[i] = v[]]; v[i] = tmp; }

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 219

Exemples de foncteurs (1/2)

= Exemple: comparateur

o Principe
= Pas d'état interne
= Opeérateur () prenant les deux objets a comparer

o Code foncteur
class Comparateur {

public:
bool operator() (const A & al, const A & a2) const
{ return (al.val() < a2.val()); }
I3
o Code appel
Comparateur cmp;
A al, az;
std::cout << cmp(al,a2) << std::endl;

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 220

Exemples de foncteurs (2/2)

= Exemple: générateur de nombres pairs

o Principe
= Etat interne conserveé par les attributs
= Opérateur () sans parametres pour la generation des nombres

o Code foncteur
class GenerateurPair {

protected: int val,
public:
GenerateurPair(void) : val(0) {}
iInt operator() (void) { val+=2; return val; }
I3
o Code appel
= GenerateurPair gen;
= std:cout << gen() <<''<< gen() << std::endl;

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 221

Foncteurs standards

= Classes de base

0 Exposent les types des parametres et de retour
o std::unary_function<Arg, Result>

o std::binary_function<Argl, Arg2, Result>

= Foncteurs prédéfinis

o Arithmétiques: addition, soustraction, multiplication, division...
m plus<T> , minus<T>, multiplies<T> , divides<T>

o Comparaisons: inferieur, supérieur, égal...
s less<T> , less equal<T> , equal to<T>
o Opérateurs logigues: et, ou, non
= logical and<T> , logical or<T>

o Utilisent simplement les opérateurs correspondants

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 222

Manipulation de foncteurs

= Création de foncteur

o A partir d'une fonction
= ptr_fun(pointeur_de_fonction)

o A partir d'une méthode
= mem_fun/mem_fun_ref(pointeur_de methode)

= Adaptation de foncteur
o Négation: notl , not2
o Fixation d'un parametre: bindlst , bind2nd

= Exemple: compter les chaines non vides dans un vecteur
vector<string> v;

iInt nbNonVides =
count_if(v.begin(), v.end(),
notl(mem_fun_ref(&string::empty)));

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 223

Séparation conteneur-algorithmes

Manipulation globale du conteneur

o Trois entités
Un conteneur pour le stockage des objets
Des iterateurs pour les acces aux objets
Des algorithmes pour la manipulation des objets

o Fonctionnement conjoint
Les algorithmes operent sur le conteneur via les itérateurs

Itérateurs
Conteneur . | Algorithme

A

Conteneurs de la STL (7/3)

Trois grandes classes de conteneurs
o Seéequences élémentaires
Vecteur, liste, file a double entrée
o Adaptations des séquences élémentaires
Pile, file, file a priorite
o Conteneurs associatifs

Ensemble avec/sans unicité
Association avec clé uniqgue/multiple

Remarques

o Tous définis dans le namespace «std »

o Utilisation intensive de la généricite
Type de données

Allocateur de mémoire
Comparateur

Conteneurs de la STL (2/3)

Choix du conteneur

o Selon les fonctionnalités disponibles
Un morceau d'APlI commun
Un morceau d'API specifique a chague conteneur

o Selon la complexité des opérations
Operations en O(1), O(log n), O(n)
o Criteres de choix
Chercher le conteneur le plus «naturel» pour l'algo voulu

Analyser la complexité du traitement
Chercher le conteneur offrant la meilleure complexité globale

Conteneurs de la STL (3/3)

= Fonctionnalités communes
o Forme Normale de Coplien

o Dimensionnement automatique de la capacite

= Exemple du vecteur
o Lorsque l'insertion d'un élément viole la capacité
0 Augmentation de la capacité

o Balises des itérateurs

a2 Quelques methodes
m Size t C:: size () const // Nombre d'éléements
m Size_t C:: max_size () const // Nombre max d'élements
= bool C.. empty () const Il Est vide ?
= Vvoid C.. swap(C &cnt) // Echange de contenu
= Vvoid C:. clear () // Vide le conteneur

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 227

Conteneurs en séquences (7/2)

Vecteur
(vector)

Liste
(list)

File a double entrée
(deque)

Seywencs Lomlainer xSy

TVpe 1Teretor

TVpe raverse iterator
lype slee Lype

=()

uix &)

winze type,T & =T
operator = (x &)
iterator beain()

iterator end()

reverse iterator rhegial)
reverse iterator read()
size bype sizel
resizesize type, T

bool empty()
inzcrtitorator, T &)
inzertiiterator,size type, T &)
insert T2 (teratnr TT.TT)
erasellterator)
erase(lteratoriteraor
push_back(T &)
pop_tack()

T dz froni)

T & back()

wector

size type capacity()

reservelsize type)

T & uperalur[siee Lvpe]

deque L
push_front{T &)
pop _Hront()

T & operator[zize tepe]

!

list hl

psh_frant{T &)
pop_front
rermnove [&)

Conteneurs en séquences (2/2)

= Meéthodes communes
o Insertion (avant la position indiquée)
m void S:: insert (S:iterator pos, T & elt)
= void S:: insert (S:iterator pos,int nb,T & elt)

= template <typename Inputlterator>
void S:: insert (S:iterator pos,
Inputlterator debut,Inputlterator fin)

o Suppression
= S:iterator S:: erase (S::iterator pos)
= S:iterator S:: erase (S::terator debut,S::iterator fin)

o Acces / ajout en téte et fin

= Vvoid S:: push back (const T & elt)
= void S:: pop_back ()

O T&S:: front ()

m const T&S:: front ()const

O T&S:: back()

m const T&S:: back () const

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 229

Vecteur

Tableau qui se redimensionne automatiguement
o Eléments contigus en mémoire (compatibilité avec les tableaux C)

Efficacité
+ Acces direct aux éléments (opérateur [|) en O(1)
+ Ajout / suppression en fin en O(1) (amorti)

Ajout / suppression ailleurs en O(n)

Utilisation
o Entéte: <vector>
o Deéclaration: std::vector<T> v;

o Possede un autre parametre template facultatif
Allocateur, gestionnaire de la mémoire interne

Méthodes spécifiques
o Contrble capacité

int V:: () const // Capacité actuelle du vecteur
void V:: (int nb) // Ajustement de la capacité

o Acces par index aux éléments
X & V:: (int idx) /I Lecture/écriture

const X & V:: (int idx) const // Lecture seule

Liste
Liste doublement chainée

Efficacité
+ Ajout / suppression n'importe ou en O(1)
Pas d'acces direct aux éléments

Utilisation

o Entéte: <list>

o Déclaration : std::list<T> |;

o Possede aussi un parametre facultatif pour I'allocateur

Méthodes spécifiques
o Ajout / suppression en téte

void L:: (const T & elt)
void L:: ()

o Suppression d'un element
void L:: (const T & elt)

o Autres algorithmes specifiques
sort , merge, splice , remove if , unique ...

File a double entrée

Similaire au vecteur sauf
o Opeéerations en téte possibles
o Contiguité des éléments non garantie

Efficacite

+ Acces direct aux éléments (opérateur [|) en O(1)

+ Ajout/suppression en téte et fin en O(1) (amorti)
Ajout/suppression ailleurs en O(n)

Utilisation

o Entéte: <deque>

o Deéclaration: std::deque<T> d;

o Possede aussi un parametre facultatif pour l'allocateur

Méthodes spécifiques
o Pas de contrGle de capacité
o Ajout/ suppression en téte

void D:: (const T & elt)
void D:: 0

o Acces par index aux eléements
X & D:: (int idx)

const X & D:: (int idx) const

Pile
(stack)

File
(queue)

File a priorité
(priority _queue

Conteneurs adapteurs (7/3)

T cu:untEnneraTF

Comtainer Adaptor - S

T contaner<T> | T cu:untznner*iTF
""“""""“""IStﬂ.ﬂ]{ queue -------- -t

type size type type size_type

stack() queusly

size type sizel) size_type sizel)

hool empty() boal empty()

push(T &) push(T &)

pop () pop ()

T & topl) T & front()

T & back()
T cu:untznner*iTF cu:ump are{TF

priority gqueue

type size_type
prionty quenel)
size type sizel)
hool empty)
push(T &)
pop()

T & topl)

Conteneurs adapteurs (2/3)

Définis a partir d'un conteneur en sequence
o Celui-ci est parametrable
o Utilise la structure de données du conteneur

Propose une API spécifique
o Celle-ci est réduite
o Pas d'itérateurs

Mecanisme de delegation
o Agrégation du conteneur
o Délégation des opérations au conteneur

Conteneurs adapteurs (3/3)

Meéecanisme de délégation

—:r S_éc;u;nge_ o
e e T Séquence
ent — ,
-déléqué ‘1 1 +equéte?
Hrequete() °~

N
AN
N

\

délégué.requéte?)

Pile

= Acces seulement au sommet de la pile
o Pas de possibilité de voir les élements empilés

= Utilisation
o Entéte: <stack>
o Deéclaration
= std::stack<T>s; // Conteneur par défaut = deque<T>
m std::stack<T,std::vector<T> > s;

= Meéthodes spécifiques

o Empilement / dépilement
= Iint S:: push(const T & elt)
= void S:: pop()

o Acces au sommet
n T & S top ()
m const T&S:: top () const

o Comparaison de piles (car impossible de voir I'empilement)
= bool operator== (const stack<T> & sl1,const stack<T> & s2)
s bool operator< (const stack<T> & sl,const stack<T> & s2)

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 236

File

= Structure FIFO (First In First Out)
o Ajout en fin, retrait en téte
o Pas de possibilite de voir les élement dans la file

= Utilisation
o Entéte: <queue>
o Déclaration
= std::queue<T> q; // Conteneur par défaut = deque<T>
s std::queue<T,std::list<T> > q;
= Ne peut pas utiliser std::vector (n'a pas pop_front())

= Meéthodes spécifiques
o Ajout / retrait
= int Q: push(const T & elt)
= void Q: pop()
o Acces aux extrémités
= front() , back()

o Comparaison de files
= Opérateurs == et <

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 237

File a priorité

= File d'attente a priorité
o Ajout en fin, retrait de I'élément le plus «grand» = foncteur comparateur
o Pas de possibilité de voir les éléments dans la file

= Ultilisation
o Entéte: <queue>
o Deéclaration

m std::priority_queue<T> p; // Conteneur par défaut = vector<T>
/l Comparateur par défaut = less<T>

m std::priority _queue<T,std::deque<T>,std::greater<T> > Q;

= Ne peut pas utiliser std::list (n'a pas operator[])

= Meéthodes spécifiques
o Constructeur (qui attend un objet comparateur)
s P:P(Comparateur & c = Comparateur())

o Ajout / retrait
= int P: push(const T & elt)
= void P: pop()
o Acces au plus grand
m T& P top ()
m const T&P:: top () const

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 238

Sorted Clontainer

Set Comtainer 17

| T.compare<T> |

type iteratar

type reverse iterator

type size_type

=(]

HE &)

operator = (x &)

iterator heging)

iterator end()

reverse terator thegin()
reverse terator rend()
size type sizel)

bool empty)

insert(T &)

erase(iterator)
erase{iterator,iterator)
erasel |’ &)

iterator find(T &)

size typs count(T &)
iterator lower _bhound{T &)
iterator upper bouad(T &)
par<iterator,iterator® equal range(T &)

éTl,TE,cnmpare{Tlﬁ !

T drraciative Container x

type tterator

type reverse iterator

type size_type

=]

x(x &)

operatar = (3 4

iterator heging)

iterator end()

reverse terator thegin()
reverse terator rend()

size typz sizel)

bool etnpty()
mnsertipar<T1, T2> &)
erase{iterator)
erase(iterator,iterator)
erase{T1 &)

iterator find{T1 &)

size type count(T1 &)
iterator lower bound(T1 &)
iterator upper bouad(T1 &)
palr<iterator,iterator> equal range(T1 &)

T1, T2, compare<Tl=

T, comparesT>
get '--eqe- -
1
T,comparesT™> .
Hll.lltiset'-—---l..-._.________.

T1,TZ, compare~Tl=
e EEELEE LT T ‘maltimap —

yd

mafr 1

T2 & operator[T1 &)

Conteneurs associatifs (7/5)

Ensemble avec unicité
(set)

Ensemble sans unicite
(multiset)

Association avec unicité
(map)

Association sans unicite
(multimap)

Association (1/2)

= Principe de l'association
o Associer une clé a chaque élément
o On accede a I'élément par sa cle

= Structure utilisée pour l'association: std ::pair
template <typename T1,typename T2>
struct pair {
T1 first;
T2 second,

pair(void) {}

pair (const Tl &tl,const T2 & t2)
. first(tl), second(t2) {}

%

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 240

Association (2/2)

= Creation d'une paire
o p = pair<int,double>(13,27.14);
o Obligé d'écrire les types parametres de la paire

= Pour éviter d'écrire les types: std :: make pair ()
template <typename T1, typename T2>
pair<Tl,T2> make_ pair(const T1 & cle,
const T2 & elt)
{ return pair<T1,T2>(cle,elt); }

= Ultilise le polymorphisme statique
o p = make pair(13,27.14);

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 241

Conteneurs associatifs (2/5)

Conteneurs associatifs triés sur la clé

o Neécessitent une relation d'ordre sur les clés
= foncteur comparateur

o Représentation interne typique: RB-tree

Ensembles
o set ou multiset

o L'élément contient sa clé

Associations

o mapou multimap

o Les éléments stockés sont des associations clé-valeur
a first =clé

o second = valeur associée

Clé unique ou multiple ?
o Unicité = set ou map
o Multiplicité = multiset ou multimap

Conteneurs associatifs (3/5)

= Attention !
o set et multiset possedent un seul parametre: set<V/>

o mapet multimap possedent deux parametres: map<K,V>
o Pourset etmultiset ,T=V
d

Pour mapet multimap , T = pair<K,V>

= Méthodes communes
o Constructeurs
= A:A(void)

= template <typename Inputlterator>
A::A(Inputlterator deb,Inputlterator fin)

= Parametre facultatif: le comparateur de clés

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 243

Conteneurs associatifs (4/5)

= Méthodes communes

o Insertions
= pair<A:iterator,bool> A:: insert (const T & elt)

= A:iterator
A:. insert (A:iterator pos,const T & elt)

= template <typename Inputlterator>
void A:: insert (Inputlterator deb,
iInputlterator fin)

o Suppressions
= void A:: erase (A:iterator pos)
= void A:: erase (A:iterator deb,A:iterator fin)
= A:size type A:: erase (const A:key type & cle)

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 244

Conteneurs associatifs (5/5)

= Méthodes communes

o Acces aux eléements
m Alsize type A count (const A:key type & cle) const
o Nombre d'éléments ayant la clé fournie

= Aiterator A:: find (const A:key type & cle) const
0 Itérateur sur le premier élément ayant la clé fournie ou A::end() sinon

= Alliterator
A:. lower bound (const A:key type & cle) const

0 Itérateur sur le 18" élément dont la clé n'est pas inférieure a celle fournie

= A:iterator
A:. upper _bound (const A:key type & cle) const

o Itérateur sur le 1°" eléement dont la clé est supérieure a celle fournie

= pair<A:iterator,A:.iterator>
A:. equal range (const A:key type & cle) const
o Fournit un encadrement des éléments ayant la clé fournie

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 245

Ensembles (1/2)

Conteneur trié d'éléments contenant leur propre clé

Utilisation
o Entétes: <set> [<multiset>

o Déclaration
= std::set<V> s; /[Comparateur par défaut = less<V>

= std:set<V,greater<V> > s;
= Possede aussi un parametre facultatif pour l'allocateur

Methodes spécifiques
o Insertion dans «set »
= pair<S:iterator,bool> S:: iInsert (const V & elt)

o Insertion dans «multiset »
= M:iterator M:: iInsert (const V & elt)

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 246

Ensembles (2/2)

= Methodes spécifiques
o Fonctions ensemblistes (entéte <algorithm>)

= Entre deux ensembles [debl,finl) et [deb2,fin2)
= Ensembles décrits par des itérateurs

= template <typename Inputlteratorl,typename Inputlterat orz2,
typename Outputlterator>
Outputlterator set_union (Inputlteratorl debl,
Inputlteratorl finl,
Inputlterator2 deb?2,
Inputlterator2 fin2,
Outputlterator res)

= |nputlteratorl . type des itérateurs du 1°" ensemble
= Inputlterator2 : type des itérateurs du 2" ensemble
= Outputlterator . type des itérateurs pour I'ensemble résultat

= Exemples
o bool includes (debl, finl, deb2, fin2)

o Outputlterator set_intersection (debl, finl, deb2, fin2, res)
o Outputlterator set_difference (debl, finl, deb2, fin2, res)
o Outputlterator set_symmetric_difference (debl, finl, deb2, fin2, res)

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 247

Associations (1/2)

= Conteneur trié d'éléments associés a une clé

= Utilisation
o Entétes: <map> / <multimap>
o Déclaration
= std::map<K,V> s; /| Comparateur par defaut = less<K >
= std::map<K,V,greater<kK> > s;
= Possede aussi un parametre facultatif pour I'allocateur

= Methodes spécifiques
0 pair<M::iterator,bool>
M:: insert (const pair<K,V> &)
o V&M: operator|] (const K & cle)

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 248

Associations (2/2)

Remarques sur 'opérateur []

o Permet un acces indexe similaire au vecteur
o Index =clé

o Complexité d'acces en O(log n)

o Attention: si la clé n'existe pas dans le conteneur, elle est
ajoutee et associee a I'element par defaut (\V())

o |l est conseillé d'utiliser I'opérateur [| pour
I'écriture (insertion)
la lecture dont on est sdr de I'existence de la clé

o Sion n'est pas sir de I'existence d'une clé
Appel préalable a find() ou count()

Utilisation des itérateurs pour parcourir

Types de données internes

Les conteneurs STL définissent des types internes
o Embarqués dans les classes

Pour tous les conteneurs

o C:value type :type des éléments stockés
Pour les associations: pair<K,V>
o Cureference :type d'une référence sur un élément stocke
o C:.const_reference . type d'une référence constante sur un
élément stocké
o Cisize type :type d'entier utilisé pour compter les éléments
o C:iterator et variations: types des iterateurs du conteneur

Pour les conteneurs associatifs
o C:key type :type des clés
Pour les associations: K
Pour les ensembles: V
o Cikey compare :comparateur des clés
o C:value compare :comparateur des elements

Algorithmes de la STL (1/2)

Collection de fonctionnalités classiques
Copier
Chercher
Trier
Insérer, supprimer, modifier
Partitionner, fusionner
Réorganiser

Remarques
o Tous définis dans le namespace std

o Définis indépendamment des conteneurs

Algorithmes de la STL (2/2)

Manipulent des itérateurs

o Geénérique: possibilité de passer n'importe quel itérateur/pointeur
o Itérateur de debut et de fin = sequence ou lire les éléments

o Parfois itérateur de sortie pour écrire le résultat

Souvent paramétres par une operation

o Principe du « patron de méthode » (algorithme a trous)

o Geénérique: possibilité de passer un foncteur ou un pointeur de fonction
o Comparateur, prédicat, générateur...

Boucle «pour chaque»

Applique une opération a chaque elément d'une séquence

Parametré par une opération unaire

Exemple
void ajouterPrefix(std::string & adresse)

{

adresse = "http://www." + adresse;

}

std::vector<std::string> adresses;

for_each(adresses.begin(), adresses.end(), ajouterP

«Vrale» boucle foreach dans C++11

refix);

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012

253

Interrogation

Recherche d'un élement par valeur
o itérateur find(début, fin, valeur)

Recherche d'un element ayant une propriété donnée
o itérateur find_if(début, fin, prédicat)

Comptage du nombre d'eléments
0 €égaux a une valeur : entier count(début, fin, valeur)
o ayant une proprieté : entier count_if(début, fin, prédicat)

Test d'egalitée de deux sequences
o booleen equal(debutl, finl, debut2, fin2)

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 254

Copie

= Copie de tous les eléments
o itérateur copy(début, fin, résultat)

= Copie des éléments ayant une certaine propriété
a copy if oublié dans C++03 !

o Present dans C++11
o Equivalence: remove copy if(... notl(predicat)):

= Exemple
vector<int> v;
int buffer[5];
list<int> I,
copy(v.begin(), v.end(), buffer);
copy(buffer, buffer + 5, back _inserter(l));
copy(l.begin(), l.end(), ostream_ iterator<int>(cout M)

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 255

«Suppression»

«Suppression» d'une valeur
o itérateur remove(début, fin, valeur)

«Suppression» des eléments ayant une certaine propriéte
o itérateur remove_if(debut, fin, prédicat)

Attention ! remove déplace seulement a la fin de la sequence
o Retourne un itérateur sur la «nouvelle fin»
o Coupler avec Conteneur::erase pour supprimer vraiment

o Exemple
v.erase(remove(v.begin(), v.end(), 42), v.end());

Versions non modifiantes
o itérateur remove_copy(début, fin, resultat, valeur)
o itérateur remove_copy_if(déebut, fin, résultat, predi cat)

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 256

Remplacement

= Remplacement d'une valeur
o void replace(début, fin, ancienneValeur, nouvelleVal eur)

» Remplacement des élements ayant une certaine propriété
o void replace if(début, fin, predicat, nouvelleValeur)

= Versions non modifiantes
o itérateur replace copy(début, fin, résultat,
ancienneValeur, nouvelleValeur)
o itérateur replace_copy if(début, fin, résultat,
prédicat, nouvelleValeur)

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 257

Transformation

= Appliquer une opération a chaque element
et stocker le résultat dans une autre sequence
o itérateur transform(début, fin, résultat, opérationU naire)
o Exemple
list<string> adressesModifiees;
transform(adresses.begin(), adresses.end(),

back_inserter(adressesModifiees),
ajouterPrefixe);

= Appliquer une opération binaire sur les éléments

de deux séguences (deux-a-deux)
o itérateur transform(débutl, finl,
déebut2,
resultat,
opérationBinaire)

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 258

Ordre (1/2)

Tri avec opérateur <
o void sort(debut, fin)

Tri avec comparateur personnalisé
o void sort(debut, fin, comparateur)

Tri stable

o Conserve l'ordre des elements équivalents
o void stable sort(début, fin[, comparateur])

Melange
o Par défaut, utilise rand()
o void random_shuffle (début, fin[, générateurAléatoire

)

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012

259

Ordre (2/2)

= Inversion
o void reverse(début, fin)
o void reverse_copy(debut, fin, résultat)

= Rotation
o Deéplace les éléments de facon a ce que milieu soit au début
o void rotate(début, milieu, fin)
o void rotate copy(debut, milieu, fin, résultat)

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 260

Remplissage d'une séquence

Valeur fixe = passage d'une valeur

Valeur variable = passage d'un genérateur
o Pointeur de fonction ou foncteur

Début et fin fournis...

o Remplissage de toute la séquence
o void fill(debut, fin, valeur)
o void generate(début, fin, générateur)

...ou nombre d'élements fournis
o void fill_n(résultat, n, valeur)
o void generate n(résultat, n, générateur)

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 261

Utilitaires

Minimum / Maximum
o Entre deux valeurs
min /max(a, b)

o D'une séquence
itérateur min /max_element(début, fin[, comparateur])

Echange de deux valeurs
o void swap(a, b)

o Par défaut, copie dans un temporaire

o Peut/doit étre spéecialisé pour étre plus efficace

Par exemple, échange d'un attribut pointeur
pour éviter la copie des éléments pointés

o Tres utilisé

Dans les algorithmes

Pour «compresser» un conteneur STL
0 La méthode clear() ne réduit pas la capacité du conteneur

Pour implémenter I'opérateur = (copy-and-swap)
0 Garantir une copie «sécurisée»

Quelques concepts liés a la STL

Itérateur
o «Pointeur» sur un élément d'un conteneur
o Permet la séparation conteneur-algorithmes

Foncteur

o «Fonction» représentée sous la forme d'un objet
o Sa classe surcharge l'opérateur ()

o Permet de paramétrer les algorithmes

Allocateur
o Objet chargé de la gestion de la mémoire dans un conteneur
o Permet d'adapter 'allocation mémoire

Optimisation: «pools» d'objets

Sécurite: multithreading

Support: mémoire en fichier

Traits

o APl commune qui permet de connaitre les caractéristiques d'un conteneur
Exemple: les types internes

o Permet aux conteneurs d'étre interchangeables

Conclusion sur la STL

Avantages
o Ensemble de fonctionnalités courantes
o Code performant et fiable

Inconvénients

o Ceux des codes génériques
Code instancié plusieurs fois

Peu de vérification préalable sur les types parametres
= erreurs de compilation difficiles a dechiffrer

o Peu de vérification de cohérence
Exemple: débordement des itérateurs

Etat actuel de la STL

o APl qui commence a dater
o Certaines classes doivent étre revues (e.g. string)

Evolution prévue

o Intégration de certaines biliotheques Boost
threads, regex, random, tables de hachage

o Draft TR1 et norme C++11

