1S

PARTIE VIII
Conversion et RTTI

Christophe Duhamel
Bruno Bachelet

Luc Touraille

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012

Implémentation de la conversion

= Deux manieres d'implémenter une conversion

= Constructeur avec un seul argument

o Fournit une conversion implicite
= Chaine::Chaine(const char * s);
= Conversion implicite const char * - Chaline

o Conversion implicite parfois non désiréee
= Mot-cle «explicit ~ »
= explicit Vecteur::Vecteur(int n);

= Opérateur de conversion
class Chaine {

operator char * (void) const { return ...; }

};...

Méthodes et outils de développement logiciel - ISIMA /ZZ3 - 2011-2012 414

Politiques de conversion

Il existe plusieurs opérateurs de conversion
o (type)

Conversion effectuée quoi gu'il arrive
o static_cast

Conversion effectuée apres vérification a la compilation
o dynamic_cast

Conversion effectuée apres verification a I'exécution
Q const_cast

Conversion portant uniguement sur l'aspect constant
0 reinterpret_cast

Conversion de pointeurs sans verification de type

Opérateur (type) (1/2)

Opérateur hérité du C

o Mais deux syntaxes possibles
o ¢ = (Chaine)s;
o ¢ = Chaine(s);

Conversion d'objets
o Effectuée a partir des opérateurs définis par le programmeur
o Aucun opérateur = conversion interdite

Conversion de types primitifs
o Opérateurs de conversion fournis par défaut

Conversion de pointeurs
o Toujours autorisée

Opérateur (type) (2/2)

= Exemple
class A{... };
class B : public A{... };
classC{... };

A *a=new A();
A * b = new B();
C *c = new C();

A * pa; B * pb;

= Conversions toujours autorisees
o pa =(A*c; I/l (1) Conversion fausse
o pb =(B*a; /Il (2) Conversion fausse
o pb =(B*)b; /Il (3) Conversion ok

= Eviter l'utilisation de l'opérateur (type)
o Cas (1): détection possible a la compilation
= Ultiliser I'opérateur static _cast
o Cas (2) & (3): detection a I'exécution
= Ultiliser l'opérateur dynamic_cast

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 417

Opérateur static_cast
Vérifie la conversion de pointeurs (ou de références) a la compilation
Conversion autorisée s'il y a un lien d'héritage
o pb =static_cast<B *>(a); Il Autorisé

o Méme si cela risque d'étre invalide a lI'exécution
o Conseil: utiliser dynamic_cast (pour une verification a I'exécution)

Conversion refusée s'il n'y a pas de lien d'héritage

o pa = static_cast<A *>(c); I/l Refusé
o Int *pi=..;
float * pf = static_cast<float *>(pi); I/l Refuseé

Fonctionne de la méme maniére sur les références

Conversion vers void * autorisee
o void * pv = static_cast<void *>(a);

Conversion depuis void * devrait étre refusée

o pa=static_cast<A *>(pv);

o Peut étre autorisé suivant le compilateur

o Conseil: utiliser reinterpret_cast dans cette situation

Opérateur dynamic_cast

Veérification de la conversion de pointeurs (ou de réferences) a I'exécution
o La méme vérification que static_cast est effectuée a la compilation
o Il ne peut pas étre employé sur le type void *

Utilisé lors d'une conversion descendante (downcast)
o Conversion d'une classe mére vers une classe fille
o Conversion ascendante (fille — mere) toujours possible

A l'exécution, la conversion peut échouer
o Conversion de pointeurs = pointeur nul retourné

o Conversion de références = exception levée
o pb =dynamic_cast<B *>(a);

Exemple avec les références
A a;
B b;

A&ra=a;

A&rb =b;

B & refl = dynamic_cast<B &>(ra); /I Exception levee a l'exécution
B & ref2 = dynamic_cast<B &>(rb); /[Conversion ok

Conversion par référence evite les recopies

Opérateur const_cast

Permet de retirer l'aspect constant d'un objet

N'a pas de signification sur une variable objet
o const Chaine cl;

Chaine c2 = cl1;
o La conversion ne pose aucun probleme

o Car une copie est effectuee,
et elle ne possede pas l'aspect constant

Vraiment utile pour les références

o const Chaine cl;
Chaine & c2 = const_cast<Chaine &>(cl);

o const _cast indispensable ici pour autoriser la conversion

L'usage de cet opérateur est a éviter
o Il permet de briser des regles fondamentales
o Souvent, obligation d'utiliser const_cast = erreur de conception
Soit en imposant a tort la constance sur la variable
Soit en omettant des méthodes qui permettraient un acces non constant
o La solution a votre probleme est peut-étre le modificateur mutable

Conversions: conclusion

Chaine B * A* Objet * void *

vers vers vers vers Vers

char * A* B * void * Objet *

(type) Oui Oui Oui Oui Oui
static_cast Oui Oui Oui Oui Ne devrait

pas

Non Oul Non

dynamic_cast : ' . ')
y . applicable Oul , (g_pre_s Oul applicable
verification)
reinterpret_cast N.on Oui Oui Oui Oui
applicable E—

Mécanisme RTTI (1/3)

Run-Time Type Information

Tres utile pour déterminer la classe réelle d'un objet a I'exécution
o Celui-ci doit étre pointé ou réeféerence

Méme type de contrble que dynamic cast

Mot-clé typeid retourne une structure de type type info
o #include <typeinfo>

Exemple

Poisson p("Maurice",10,20,3);
Mammifere m("Rantanplan“,5,9,17);
Animal * pa = &p;

Animal * pb = &m;

std::cout << typeid(*pa).name();

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012 422

Mécanisme RTTI (2/3)

La structure type info contient des informations sur le type
o Nom du type: méthode name
o Plus intéressant, opérateurs == et |=

Permet de verifier que deux objets sont du méme type
If (typeid(*pa)==typeid(*pb))
cout << "lIs sont de méme type." << std::endl;
else
cout << "lls ne sont pas de méme type." << std::end ;

typeid peut s'appliquer sur un type
iIf (typeid(*pa)==typeid(Poisson))
std::cout << "C'est un poisson.";
else std:.:.cout << "Ce n'est pas un poisson.";

Attention au piege: fournir des références et non des pointeurs
o Car pas de liens entre les pointeurs
a2 Aucun lien entre Animal * et Poisson *

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012

423

Mécanisme RTTI (3/3)

= Exemple

Animal * pp = new Poisson("Maurice",10,20,3);

Animal & rp = *pp;

= Résultats de comparaisons de types

typeid(Animal)

typeid(Poisson)

typeid(Animal *)

typeid(Poisson *)

typeid(pp)

typeid(rp)

typeid(*pp)

typeid(&rp)

Méthodes et outils de développement logiciel - ISIMA [ZZ3 - 2011-2012

424

