
Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 413

PPARTIEARTIE VIIIVIII

Conversion et RTTIConversion et RTTI

Christophe DuhamelChristophe Duhamel

Bruno BacheletBruno Bachelet

Luc Luc TourailleTouraille

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 414

ImplImpléémentation de la conversionmentation de la conversion

� Deux manières d'implémenter une conversion

� Constructeur avec un seul argument
� Fournit une conversion implicite

� Chaine::Chaine(const char * s);
� Conversion implicite const char * → Chaine

� Conversion implicite parfois non désirée
� Mot-clé «explicit »
� explicit Vecteur::Vecteur(int n);

� Opérateur de conversion
class Chaine {

...
operator char * (void) const { return …; }
...

};

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 415

Politiques de conversionPolitiques de conversion

� Il existe plusieurs opérateurs de conversion
� (type)

� Conversion effectuée quoi qu'il arrive

� static_cast

� Conversion effectuée après vérification à la compilation

� dynamic_cast

� Conversion effectuée après vérification à l'exécution

� const_cast

� Conversion portant uniquement sur l'aspect constant

� reinterpret_cast

� Conversion de pointeurs sans vérification de type

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 416

OpOpéérateur rateur (type) (1/2)(type) (1/2)

� Opérateur hérité du C
� Mais deux syntaxes possibles
� c = (Chaine)s;

� c = Chaine(s);

� Conversion d'objets
� Effectuée à partir des opérateurs définis par le programmeur
� Aucun opérateur ⇒ conversion interdite

� Conversion de types primitifs
� Opérateurs de conversion fournis par défaut

� Conversion de pointeurs
� Toujours autorisée

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 417

OpOpéérateur rateur (type) (2/2)(type) (2/2)

� Exemple
class A { ... };
class B : public A { ... };
class C { ... };

A * a = new A();
A * b = new B();
C * c = new C();

A * pa; B * pb;

� Conversions toujours autorisées
� pa = (A *)c; // (1) Conversion fausse
� pb = (B *)a; // (2) Conversion fausse
� pb = (B *)b; // (3) Conversion ok

� Eviter l'utilisation de l'opérateur (type)
� Cas (1): détection possible à la compilation

� Utiliser l'opérateur static_cast

� Cas (2) & (3): détection à l'exécution
� Utiliser l'opérateur dynamic_cast

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 418

OpOpéérateur rateur static_caststatic_cast
� Vérifie la conversion de pointeurs (ou de références) à la compilation

� Conversion autorisée s'il y a un lien d'héritage
� pb = static_cast<B *>(a); // Autorisé
� Même si cela risque d'être invalide à l'exécution
� Conseil: utiliser dynamic_cast (pour une vérification à l'exécution)

� Conversion refusée s'il n'y a pas de lien d'héritage
� pa = static_cast<A *>(c); // Refusé
� int * pi = …;

float * pf = static_cast<float *>(pi); // Refusé

� Fonctionne de la même manière sur les références

� Conversion vers void * autorisée
� void * pv = static_cast<void *>(a);

� Conversion depuis void * devrait être refusée
� pa=static_cast<A *>(pv);
� Peut être autorisé suivant le compilateur
� Conseil: utiliser reinterpret_cast dans cette situation

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 419

OpOpéérateur rateur dynamic_castdynamic_cast

� Vérification de la conversion de pointeurs (ou de références) à l'exécution
� La même vérification que static_cast est effectuée à la compilation
� Il ne peut pas être employé sur le type void *

� Utilisé lors d'une conversion descendante (downcast)
� Conversion d'une classe mère vers une classe fille
� Conversion ascendante (fille→mère) toujours possible

� A l'exécution, la conversion peut échouer
� Conversion de pointeurs ⇒ pointeur nul retourné
� Conversion de références ⇒ exception levée
� pb = dynamic_cast<B *>(a);

� Exemple avec les références
A a;
B b;

A & ra = a;
A & rb = b;
B & ref1 = dynamic_cast<B &>(ra); // Exception levée à l'exécution
B & ref2 = dynamic_cast<B &>(rb); // Conversion ok

� Conversion par référence évite les recopies

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 420

OpOpéérateur rateur const_castconst_cast

� Permet de retirer l'aspect constant d'un objet

� N'a pas de signification sur une variable objet
� const Chaine c1;

Chaine c2 = c1;
� La conversion ne pose aucun problème
� Car une copie est effectuée,

et elle ne possède pas l'aspect constant

� Vraiment utile pour les références
� const Chaine c1;

Chaine & c2 = const_cast<Chaine &>(c1);
� const_cast indispensable ici pour autoriser la conversion

� L'usage de cet opérateur est à éviter
� Il permet de briser des règles fondamentales
� Souvent, obligation d'utiliser const_cast ⇒ erreur de conception

� Soit en imposant à tort la constance sur la variable
� Soit en omettant des méthodes qui permettraient un accès non constant

� La solution à votre problème est peut-être le modificateur mutable

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 421

Conversions: conclusionConversions: conclusion

OuiOuiOuiOui
Non

applicable
reinterpret_cast

Non
applicable

Oui
Oui

(après
vérification)

Oui
Non

applicable
dynamic_cast

Ne devrait
pas

OuiOuiOuiOuistatic_cast

OuiOuiOuiOuiOui(type)

void *

Vers
Objet *

Objet *

vers
void *

A *

vers
B *

B *

vers
A *

Chaine

vers
char *

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 422

MMéécanisme RTTI canisme RTTI (1/3)(1/3)
� Run-Time Type Information

� Très utile pour déterminer la classe réelle d'un objet à l'exécution
� Celui-ci doit être pointé ou référencé

� Même type de contrôle que dynamic_cast

� Mot-clé typeid retourne une structure de type type_info
� #include <typeinfo>

� Exemple
Poisson p("Maurice",10,20,3);
Mammifere m("Rantanplan",5,9,17);
Animal * pa = &p;
Animal * pb = &m;
...
std::cout << typeid(*pa).name();

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 423

MMéécanisme RTTI canisme RTTI (2/3)(2/3)

� La structure type_info contient des informations sur le type
� Nom du type: méthode name
� Plus intéressant, opérateurs == et !=

� Permet de vérifier que deux objets sont du même type
if (typeid(*pa)==typeid(*pb))

cout << "Ils sont de même type." << std::endl;
else

cout << "Ils ne sont pas de même type." << std::end l;

� typeid peut s'appliquer sur un type
if (typeid(*pa)==typeid(Poisson))

std::cout << "C'est un poisson.";
else std::cout << "Ce n'est pas un poisson.";

� Attention au piège: fournir des références et non des pointeurs
� Car pas de liens entre les pointeurs
� Aucun lien entre Animal * et Poisson *

Méthodes et outils de développement logiciel - ISIMA / ZZ3 - 2011-2012 424

MMéécanisme RTTI canisme RTTI (3/3)(3/3)

� Exemple
Animal * pp = new Poisson("Maurice",10,20,3);

Animal & rp = *pp;

� Résultats de comparaisons de types

!===!=!=typeid(&rp)

!=!===!=typeid(*pp)

!=!===!=typeid(rp)

!===!=!=typeid(pp)

typeid(Poisson *)typeid(Animal *)typeid(Poisson)typeid(Animal)

